1
|
Shang Y, Liu C, Tian J, Zhou R, Hu Q, Sun X. Flexible and low-temperature-resistant double-network hydrogel with a bionic octopus-tentacle-like structure for integrated supercapacitor and nanogenerator sensor fabrication. J Colloid Interface Sci 2025; 695:137769. [PMID: 40327957 DOI: 10.1016/j.jcis.2025.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Flexible and stretchable hydrogels are important components of flexible electronics; however, they are typically easily detached upon repeated high-strain stretching because of their smooth surfaces and cannot be used at subfreezing temperatures because of ice formation. To address these shortcomings, we prepared a low-temperature-resistant and flexible double-network hydrogel with a bionic octopus-tentacle-like structure composed of polyvinyl alcohol and sodium alginate. We also verified its suitability for developing high-performance, flexible, stretchable, and environmentally durable supercapacitors and nanogenerator sensors. The influence of melting temperature on the hydrogel's surface morphology decreased the interfacial resistance. The fabricated supercapacitor demonstrated exceptional performance, with 1326.5 mF cm-2 (areal capacitance) at 1 mA cm-2, a maximum energy and power densities of 172.3 μWh cm-2, and 708.6 mW cm-2, respectively, outperforming most integrated supercapacitors previously reported. The corresponding nanogenerator sensor demonstrated outstanding suitability for energy harvesting and low-temperature sensing, with potential applications in underwater information transmission using international Morse code. The results of this study paves the way for the fabrication of intelligent wearable electronics and solves the problems associated with the fabrication of flexible and low-temperature-resistant hydrogels.
Collapse
Affiliation(s)
- Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, People's Republic of China
| | - Chunlin Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610000, People's Republic of China.
| | - Jinfeng Tian
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, People's Republic of China; College of Basic Medicine, Panzhihua University, Panzhihua 617000, People's Republic of China.
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, People's Republic of China
| | - Qin Hu
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610000, People's Republic of China
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
2
|
Han D, Wang P, Huang H, Deng J, Chen J, Tang W, Wang T, Li B, Zhang L, Lai L. Super-Elastic and Temperature-Tolerant Hydrogel Electrodes for Supercapacitors via MXene Enhanced Ice-Templating Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400690. [PMID: 39210651 DOI: 10.1002/smll.202400690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Developing flexible energy storage devices with good deformation resistance under extreme operating conditions is highly desirable yet remains very challenging. Super-elastic MXene-enhanced polyvinyl alcohol/polyaniline (AMPH) hydrogel electrodes are designed and synthesized through vertical gradient ice templating-induced polymerization. This approach allows for the unidirectional growth of polyaniline (PANI) and 2D MXene layers along the elongated arrayed ice crystals in a controlled manner. The resulting 3D unidirectional AMPH hydrogel exhibits inherent stretchability and electronic conductivity, with the ability to completely recover its shape even under extreme conditions, such as 500% tensile strain, 50% compressive strain. The presence of MXene in the hydrogel electrode enhances its resilience to mechanical compression and stretching, resulting in less variation in resistance. AMPH has a specific capacitance of 130.68 and 88.02 mF cm-2 at a current density of 0.2 and 2 mA cm-2, respectively, and retains 90% and 70% of its original capacitance at elongation of 100% and 200%, respectively. AMPH-based supercapacitors demonstrate exceptional performance in high salinity environments and wide temperature ranges (-30-80 °C). The high electrochemical activity, temperature tolerance, and mechanical robustness of AMPH-based supercapacitor endow it promising as the power supply for flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Peng Wang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Haitao Huang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Jiahua Deng
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Jiankang Chen
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Weijie Tang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Tingyi Wang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Binbin Li
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, Jurong Island, 627833, Singapore
| | - Linfei Lai
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| |
Collapse
|
3
|
Chen L, Gong R, Ge D, Yang L, Hu Z, Yu HY. Stiff gel-protected fiber-shaped supercapacitors based on CNFA/silk composite fiber with superhigh interference-resistant ability as self-powered temperature sensor. Int J Biol Macromol 2024; 278:134604. [PMID: 39137853 DOI: 10.1016/j.ijbiomac.2024.134604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.
Collapse
Affiliation(s)
- Lumin Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ruixin Gong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Ge
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Yang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongce Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Liu F, Ye P, Cheng Q, Zhang D, Nie Y, Shen X, Zhu M, Xu H, Li S. By Introducing Multiple Hydrogen Bonds Endows MOF Electrodes with an Enhanced Structural Stability. Inorg Chem 2024; 63:14630-14640. [PMID: 39033405 DOI: 10.1021/acs.inorgchem.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have attracted great interest in energy storage areas. However, the poor structural stability of MOFs derived from weak coordination bonds limits their applications. Here, quadruple hydrogen bonds (H-bonds) were introduced onto the MOFs to enhance their structural stability. Cross-linked networks could be formed between molecules owing to multiple H-bonds, strengthening the framework stability. Moreover, the dynamic reversibility of H-bonds could endow MOFs with self-healing ability. Furthermore, due to lower binding energy compared to coordination bonds, H-bonds break preferentially when subjected to internal stress, thus protecting the MOFs. Consequently, the as-prepared self-healing hybrid (SHH-Cu-MOF@Ti3C2TX) exhibited high capacitance retention (89.4%) after 5000 cycles at 1 A g-1, while that hybrid without dynamic H-bonds (H-Cu-MOF@Ti3C2TX) presented a 79.9% retention, delivering an enhancement in cycling stability. Moreover, an asymmetric supercapacitor (ASC) was fabricated by employing SHH-Cu-MOF@Ti3C2TX and activated carbon (AC) as the electrodes. The ASC delivered a specific capacitance (47.4 F g-1 at 1 A g-1), an energy density (16.9 Wh kg-1), and a power density (800 W kg-1) as well as good rate ability (retains 81% of its initial capacitance from 0.2 A g-1 to 5 A g-1).
Collapse
Affiliation(s)
- Feng Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Pingwei Ye
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiang Cheng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daohong Zhang
- School of Chemistry and Materials science, South-Central Minzu University, Wuhan 430074, China
| | - Yijing Nie
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojuan Shen
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maiyong Zhu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sumin Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Del Bosque A, Sánchez-Romate XF, Sánchez M, Ureña A. Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. NANOTECHNOLOGY 2024; 35:292003. [PMID: 38621367 DOI: 10.1088/1361-6528/ad3e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds.
Collapse
Affiliation(s)
- Antonio Del Bosque
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, E-05005 Ávila, Spain
| | - Xoan F Sánchez-Romate
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
| | - María Sánchez
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
6
|
Wang Y, Wei Z, Ji T, Bai R, Zhu H. Highly Ionic Conductive, Stretchable, and Tough Ionogel for Flexible Solid-State Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307019. [PMID: 38111366 DOI: 10.1002/smll.202307019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/17/2023] [Indexed: 12/20/2023]
Abstract
The increasing demand for wearable electronics calls for advanced energy storage solutions that integrate high electrochemical performances and mechanical robustness. Ionogel is a promising candidate due to its stretchability combined with high ionic conductivity. However, simultaneously optimizing both the electrochemical and mechanical performance of ionogels remains a challenge. This paper reports a tough and highly ion-conductive ionogel through ion impregnation and solvent exchange. The fabricated ionogel consists of double interpenetrating networks of long polymer chains that provide high stretchability. The polymer chains are crosslinked by hydrogen bonds that induce large energy dissipation for enhanced toughness. The resultant ionogel possesses mechanical stretchability of 26, tensile strength of 1.34 MPa, and fracture toughness of 4175 J m-2. Meanwhile, due to the high ion concentrations and ion mobility in the gel, a high ionic conductivity of 3.18 S m-1 at room temperature is achieved. A supercapacitor of this ionogel sandwiched with porous fiber electrodes provides remarkable areal capacitance (615 mF cm-2 at 1 mA cm-2), energy density (341.7 µWh cm-2 at 1 mA cm-2), and power density (20 mW cm-2 at 10 mA cm-2), offering significant advantages in applications where high efficiency, compact size, and rapid energy delivery are crucial, such as flexible and wearable electronics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Zhengxuan Wei
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tongtai Ji
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ruobing Bai
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Peng Z, Zhou Y, Shu H, Yu C, Zhong W. Ultrahigh-Ionic-Conductivity, Antifreezing Poly(amidoxime)-Grafted Polyzwitterion Hydrogel for Facile Integrated into High-Performance Stretchable Flexible Supercapacitor. ACS OMEGA 2024; 9:2234-2249. [PMID: 38250425 PMCID: PMC10795038 DOI: 10.1021/acsomega.3c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Developing wearable supercapacitors (SCs) with high stretchability, arbitrary deformability, and antifreezing ability is still a challenge. In the present work, an ultrahigh-ionic-conductivity, antifreezing poly(amidoxime)-graft-polyzwitterion (PAO-g-PSBMA) hydrogel electrolyte is fabricated by grafting PSBMA in PAO. Owing to the abundant hydrophilic and high ionic adsorption capacity of amidoxime groups in PAO and zwitterion groups in PSBMA, the as-prepared PAO-g-PSBMA hydrogel can facilitate the dissociation of lithium salt and exhibit an ultrahigh ionic conductivity of 29.8 S m-1 at 25 °C and 3.4 S m-1 even at -30 °C. Employing mATi3C2Tx and mSTi3C2Tx, which contain small amounts of PAO-AGE and PAO-g-PSBMA dispersions, respectively, coated onto both sides of the PAO-g-PSBMA hydrogel, we followed a thermal treatment to facilely form integrated stretchable flexible SCs. The as-prepared SCs show an outstanding recoverable tensile stain of 80% and an excellent electrochemical stability under many types and times of arbitrary deformation. More importantly, as-prepared mATi3C2Tx- and mSTi3C2Tx-based SCs present fantastic antifreezing ability and excellent stability with 74.6 and 78.3% retention of the initial capacitance, respectively, even after 1000 times of stretching to 60% at -30 °C. This work offers a new strategy of using PAO-grafted polyzwitterion for obtaining an antifreezing stretchable SC, which shows a high potential for application in next-generation integrated stretchable devices in various fields.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yutang Zhou
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Honghao Shu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Yang Q, Wang J, Luo J, Tan S, Wang CH, Wu Y. Polyacrylate- graft-polypyrrole Copolymer as Intrinsically Elastic Electrodes for Stretchable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38878-38887. [PMID: 37534699 DOI: 10.1021/acsami.3c08623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Constructing elastic electrodes with high mechanical and electrochemical stability remains a challenge in developing flexible supercapacitors. Instability of elastic composite electrodes stems from detachment of noncovalently associated electroactive components from elastic substrates under cyclic deformations. Herein, a novel all-organic copolymer consisting of polypyrrole grafted from a polyacrylate elastomer is proposed as elastic electrodes for stretchable supercapacitors. The single copolymer is obtained by graft polymerization in the swollen state, characterized by a wrinkled polypyrrole coating covalently attached on an elastic core. The copolymer is intrinsically elastic and maintains structural integrity under bending, twisting, and stretching deformations to ensure stable electrochemical performance. In addition, the grafted polypyrrole aggregates densely under the constraint of the backbone and gives a competitive conductivity of 41.6 S cm-1. A stretchable supercapacitor is constructed using the copolymer as electrodes and an acid hydrogel as an electrolyte, resulting in a specific capacitance of 430 mF cm-2. The supercapacitor delivers a capacitance retention of 100% after 1000 stretching-releasing cycles, exhibiting mechanical and electrochemical reliability under elastic deformations.
Collapse
Affiliation(s)
- Qing Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jun Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Cai Hong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
9
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Construction of porous and free-standing film electrodes composed of MXene, carbon nanocoils and PEDOT:PSS for high-performance flexible supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Xu ZW, Wang J, Dong L, Xie G, He Y, Liu N, Zhao FG, Xiao WJ, Liu LN, Li Y, Bai J, Li J, Li WS. Ultrasimple air-annealed pure graphene oxide film for high-performance supercapacitors. J Colloid Interface Sci 2022; 622:960-970. [PMID: 35561614 DOI: 10.1016/j.jcis.2022.04.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Realizing both high gravimetric and volumetric specific capacitances (noted as CW and CV, respectively) is an essential prerequisite for the next-generation, high performance supercapacitors. However, the need of electronic/ionic transport for electrochemical reactions causes a "trade-off" between compacted density and capacitance of electrode, thereby impairing gravimetric or volumetric specific capacitances. Herein, we report a high-performance, film-based supercapacitor via a thermal reduction of graphene oxide (GO) in air. The reduced, layer-structured graphene film ensures high electrode density and high electron conductivity, while the hierarchical channels generated from reduction-induced gas releasing process offer sufficient ion transport pathways. Note that the resultant graphene film is employed directly as electrodes without using any additives (binders and conductive agents). As expected, the as-prepared electrodes perform particularly well in both CW (420F g-1) and CV (360F cm-3) at a current density of 0.5 A g-1. Even at an ultrahigh current density of 50 A g-1, CW and CV maintain in 220F g-1 and 189F cm-3, respectively. Furthermore, the corresponding symmetric two-electrode supercapacitor achieves both high gravimetric energy density of 54 W h kg-1 and high gravimetric power density of 1080 W kg-1, corresponding to volumetric energy density of 46 W h L-1 and volumetric power density of 917 W L-1.
Collapse
Affiliation(s)
- Zi-Wen Xu
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Jian Wang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Lei Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guanghui Xie
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Yuxing He
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Naxing Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Fu-Gang Zhao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Wen-Jing Xiao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li-Na Liu
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuanyuan Li
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Junjing Bai
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Jingjing Li
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District, Zhengzhou 450044, China
| | - Wei-Shi Li
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District, Zhengzhou 450044, China.
| |
Collapse
|
12
|
In situ growth of Ni-Co-S nanosheet arrays on rGO decorated Ni foam toward high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Niu W, Liu X. Stretchable Ionic Conductors for Soft Electronics. Macromol Rapid Commun 2022; 43:e2200512. [PMID: 35880907 DOI: 10.1002/marc.202200512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Indexed: 11/08/2022]
Abstract
With the rapid development of soft electronics in the era of Internet of Everything (IoE), electrical conductors with stretchability, the indispensable components of soft electronics, have gained new opportunities and also faced increasing challenges. According to the principles of electrical conductivity, stretchable electrical conductors can be divided into electronic conductors and ionic conductors. Different from the stretchable electronic conductors derived from stretchable polymeric matrices integrated with electronically conductive fillers, stretchable ionic conductors are constructed by embedding mobile ions into the crosslinked polymer networks. Therefore, stretchable ionic conductors have received extensive attention and in-depth research in the past decade, thanks to their intrinsic stretchability and electrical conductivity. This review systematically summarizes the achievements on the different categories of stretchable ionic conductors (e.g., hydrogels, ionogels, and liquid-free ion-conductive elastomers), in terms of their design, fabrication, properties, and applications. The advantages and limitations of the different types of stretchable ionic conductors are discussed. Outlooks are also provided to envision the remaining challenges for the further development and practical applications of stretchable ionic conductors. It is expected to arouse inspirations for the design and fabrication of new and high-performance stretchable ionic conductors and advanced soft electronics for the IoE era. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|