1
|
Bogireddy NKR, Ghafour El Hachimi A, Celaya CA, Muñiz J, Thomas T, Elias AL, Lei Y, Terrones M, Agarwal V. Exploring PtAg onto silanized biogenic silica as an electrocatalyst for H 2 evolution: A combined experimental and theoretical investigation. J Colloid Interface Sci 2025; 677:271-283. [PMID: 39146815 DOI: 10.1016/j.jcis.2024.07.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
The task of creating a remarkably stable and effective electrochemical catalyst for efficient hydrogen evolution is arduous, primarily due to the multitude of factors that need to be taken into account for the industrial utilization of Pt. In this work, hybrid formation through in-situ reduction of Pt onto biogenic porous silica (Pt-SiO2) is tested for its use as an efficient catalyst for hydrogen production. Exceptionally high electrocatalytic activity and excellent reusability of catalysts up to 200 cycles have been demonstrated. Pt-SiO2 with low Pt content of 0.48 to 0.82 at% with active catalytic sites exhibit superior catalytic activity with a Tafel slope of 22 mV dec-1 and an overpotential of 28 mV (vs. RHE at 10 mA cm-2) as compared to the Pt wire and previously reported bare Pt-SiO2 (0.65 at% and 0.48 at% of Pt), and hybrid (Pt/Ag) structures formed onto two different biogenic porous SiO2 substrates. The best catalytic performance of the Pt1Ag3 cluster, representing a low Pt concentration, has been validated by Density Functional Theory (DFT) calculations. Here, the high production from the Pt1Ag3 cluster is assigned to the mutual synergistic effect between Pt/Ag atoms. The Pt atoms transfer the excess charge to the nearest Ag neighbors inside the cluster, facilitating hydrogen diffusion on the activated sites. These important findings authenticate the superior hydrogen production at reduced Pt concentration on amine-functionalized biogenic porous silica.
Collapse
Affiliation(s)
| | - Abdel Ghafour El Hachimi
- Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Complejo Científico-Tecnológico, 26006-Logroño, Spain
| | - Christian A Celaya
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C., C.P. 22800, Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos-62580, Mexico
| | - Tijin Thomas
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Ana Laura Elias
- Department of Physics, Binghamton University, Binghamton, NY-13902, USA
| | - Yu Lei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen-518055, China
| | - Mauricio Terrones
- Department of Physics, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA-16802, USA.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos-62209, Mexico.
| |
Collapse
|
2
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
3
|
Chen J, Ding J, Shan J, Wang T, Zhou R, Zhuang Q, Kong J. Recent advances in precursor-derived ceramics integrated with two-dimensional materials. Phys Chem Chem Phys 2022; 24:24677-24689. [DOI: 10.1039/d2cp02678c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review focused on the recent advances in precursor-derived ceramics integrated with two-dimensional materials. Their fabrication methods, structures and applications were discussed in detail and the perspectives in this field were presented.
Collapse
Affiliation(s)
- Jianxin Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jichao Ding
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahui Shan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Rui Zhou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Zhuang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|