1
|
Qian W, Yang Y. Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412858. [PMID: 39428909 DOI: 10.1002/adma.202412858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Energy crisis inspires the development of renewable and clean energy sources, along with related applications such as nanogenerators and self-powered devices. Balancing high performance and environmental sustainability in advanced material innovation is a challenging task. Addressing the global challenges of sustainable development and carbon neutrality lead to increased interest in biopolymer research. Nanocellulose materials, derived from biopolymers, demonstrate potential as template candidates for advanced materials, due to their unique properties, including high strength, high surface area, controllable pore structures and high-water retention. In recent years, cellulose-templated nanomaterials enable delicate nano-/microscale structural construction, thus promoting developments in the field of nanogenerators and self-powered sensors. However, there is still a limited number of reviews focused on cellulose-templated nanomaterials for applications in nanogenerators and self-powered sensors. This review aims to fill this research gap by introducing various cellulose-templated nanomaterials and providing a detailed analysis of their fashionable applications in nanogenerators and self-powered sensors. The goal is to present cellulose-templated nanomaterials as highly promising template and guest materials for templating technologies, offering sustainable nano-/microscale control over advanced materials for the foreseeable future. This potential is promising for new applications in the fields of nanogenerators and self-powered sensors.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Chemical Engineering Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
2
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Xu Y, He Y, Wu F, Zhou X, Liu M. Formation and Application of Polymer Spherulite-like Patterns of Halloysite Nanotubes by Evaporation-Induced Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38471076 DOI: 10.1021/acsami.3c18917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Halloysite nanotubes (HNTs) are one-dimensional clay nanomaterials featuring distinct tubular structures and unique surface charges. HNTs can readily form ordered assembly structures under specific conditions, which shows significant potential applications in optical and biological fields. In this study, sodium hexametaphosphate (SHMP) was employed as a stabilizer to prepare polymer spherulite-like patterns via the evaporation-induced self-assembly (EISA) technique. The incorporation of SHMP enhanced the repulsion force among the nanotubes and the surface potential, which facilitated the orderly deposition of HNTs. The influence of HNT concentration, SHMP concentration, drying temperature, and substrate on the polymer spherulites-like pattern has been investigated in detail. The optimal conditions were 10 wt % HNT dispersion, 0.6 wt % SHMP concentration, 30 °C as drying temperature, and glass substrates. In addition, by changing the droplet volume and shape of the three-phase contact line, patterns of different sizes and shapes can be achieved. Bovine serum albumin or metal salt compounds were incorporated into the dispersion of SHMP-modified HNTs, which altered the charge and the self-assembled patterns with different area ratios. Thus, this technology can be utilized for the analysis and comparison of protein and metal ion concentration accurately. This study creates the correlation between the structural parameters and the preparation process involved in creating polymer spherulite-like patterns of modified HNTs and offers fresh insights into potential applications for the self-assembly of HNT droplets in the realms of anticounterfeiting and solution concentration analysis.
Collapse
Affiliation(s)
- Yuqian Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR of China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR of China
| | - Feng Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR of China
| | - Xinyuan Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR of China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR of China
| |
Collapse
|
4
|
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, Tang W, Gong J. Chirality Supramolecular Systems: Helical Assemblies, Structure Designs, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307874. [PMID: 37890278 DOI: 10.1002/smll.202307874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Chirality, as one of the most striking characteristics, exists at various scales in nature. Originating from the interactions of host and guest molecules, supramolecular chirality possesses huge potential in the design of functional materials. Here, an overview of the recent progress in structure designs and functions of chiral supramolecular materials is present. First, three design routes of the chiral supramolecular structure are summarized. Compared with the template-induced and chemical synthesis strategies that depend on accurate molecular identification, the twisted-assembly technique creates chiral materials through the ordered stacking of the nanowire or films. Next, chirality inversion and amplification are reviewed to explain the chirality transfer from the molecular level to the macroscopic scale, where the available external stimuli on the chirality inversion are also given. Lastly, owing to the optical activity and the characteristics of the layer-by-layer stacking structure, the supramolecular chirality materials display various excellent performances, including smart response, shape-memorization, superior mechanical performance, and applications in biomedical fields. To sum up, this work provides a systematic review of the helical assemblies, structure design, and applications of supramolecular chirality systems.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
5
|
Pyeon J, Park SM, Kim J, Kim JH, Yoon YJ, Yoon DK, Kim H. Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing. Nat Commun 2023; 14:8096. [PMID: 38065944 PMCID: PMC10709361 DOI: 10.1038/s41467-023-43511-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/11/2023] [Indexed: 08/17/2024] Open
Abstract
Cellulose nanocrystals (CNCs) are intriguing as a matrix for plasmonic metasurfaces made of gold nanorods (GNRs) because of their distinctive properties, including renewability, biodegradability, non-toxicity, and low cost. Nevertheless, it is very difficult to precisely regulate the positioning and orientation of CNCs on the substrate in a consistent pattern. In this study, CNCs and GNRs, which exhibit tunable optical and anti-icing capabilities, are employed to manufacture a uniform plasmonic metasurface using a drop-casting technique. Two physical phenomena-(i) spontaneous and rapid self-dewetting and (ii) evaporation-induced self-assembly-are used to accomplish this. Additionally, we improve the CNC-GNR ink composition and determine the crucial coating parameters necessary to balance the two physical mechanisms in order to produce thin films without coffee rings. The final homogeneous CNC-GNR film has consistent annular ring patterns with plasmonic quadrant hues that are properly aligned, which enhances plasmonic photothermal effects. The CNC-GNR multi-array platform offers above-zero temperatures on a substrate that is subcooled below the freezing point. The current study presents a physicochemical approach for functional nanomaterial-based CNC control.
Collapse
Affiliation(s)
- Jeongsu Pyeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soon Mo Park
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Juri Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong-Hwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Wang Q, Niu W, Feng S, Liu J, Liu H, Zhu Q. Accelerating Cellulose Nanocrystal Assembly into Chiral Nanostructures. ACS NANO 2023. [PMID: 37464327 DOI: 10.1021/acsnano.3c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cellulose nanocrystal (CNC) suspensions self-assembled into chiral nematic liquid crystals. This property has enabled the development of versatile optical materials with fascinating properties. Nevertheless, the scale-up production and commercial success of chiral nematic CNC superstructures face significant challenges. Fabrication of chiral nematic CNC nanostructures suffers from a ubiquitous pernicious trade-off between uniform chiral nematic structure and rapid self-assembly. Specifically, the chiral nematic assembly of CNCs is a time-consuming, spontaneous process that involves the organization of particles into ordered nanostructures as the solvent evaporates. This review is driven by the interest in accelerating chiral nematic CNC assembly and promoting a long-range oriented chiral nematic CNC superstructure. To start this review, the chirality origins of CNC and CNC aggregates are analyzed. This is followed by a summary of the recent advances in stimuli-accelerated chiral nematic CNC self-assembly procedures, including evaporation-induced self-assembly, continuous coating, vacuum-assisted self-assembly, and shear-induced CNC assembly under confinement. In particular, stimuli-induced unwinding, alignment, and relaxation of chiral nematic structures were highlighted, offering a significant link between the accelerated assembly approaches and uniform chiral nematic nanostructures. Ultimately, future opportunities and challenges for rapid chiral nematic CNC assembly are discussed for more innovative and exciting applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wen Niu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Guo D, Xu Y, Ruan J, Tong J, Li Y, Zhai T, Song Y. Nonpolar Solvent Modulated Inkjet Printing of Nanoparticle Self-Assembly Morphologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208161. [PMID: 37191293 DOI: 10.1002/smll.202208161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Patterning of luminescent nanomaterials is critical in the fields of display and information encryption, and inkjet printing technology have shown remarkable significance with the advantage of fast, large-scalable and integrative. However, inkjet printing nanoparticle deposits with high-resolution and well controlled morphology from nonpolar solvent droplets is still challenging. Herein, a facile approach of nonpolar solvent modulated inkjet printing of nanoparticles self-assembly patterns driven by the shrinkage of the droplet and inner solutal convection is proposed. Through regulating the solvent composition and nanoparticle concentration, multicolor light-emissive upconversion nanoparticle self-assembly microarrays with tunable morphologies are achieved, showing the integration of designable microscale morphologies and photoluminescences for multimodal anti-counterfeit. Furthermore, inkjet printing of nanoparticles self-assembled continuous lines with adjustable morphologies by controlling the coalescence and drying of the ink droplets is achieved. The high resolution of inkjet printing microarrays and continuous lines' width < 5 and 10 µm is realized, respectively. This nonpolar solvent-modulated inkjet printing of nanoparticle deposits approach facilitates the patterning and integration of different nanomaterials, and is expected to provide a versatile platform for fabricating advanced devices applied in photonics integration, micro-LED, and near-field display.
Collapse
Affiliation(s)
- Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanan Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Junhua Tong
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yixuan Li
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Karsakova M, Shchedrina N, Karamyants A, Ponkratova E, Odintsova G, Zuev D. Eco-friendly Approach for Creation of Resonant Silicon Nanoparticle Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:204-210. [PMID: 36542552 DOI: 10.1021/acs.langmuir.2c02382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The commercial application of Mie-resonant nanophotonic technologies currently used in various laboratory studies, from biosensing to quantum optics, appears to be challenging. Development of colloidal-based fabrication approaches is a solution to face the issue. In our research, we studied the fabrication of resonant Si nanoparticle (NP) arrays on a surface with controlled wettability. First, we use nanosecond (ns) laser ablation in water and subsequent density gradient separation to obtain colloids of resonant spherical crystalline silicon NPs with a low polydispersity index. Then, the same industrial ns laser is applied to create a wetting gradient on the steel substrate to initiate a self-assembly of the NPs deposited by drop casting. Thus, we use a single commercial ns laser for producing both the NPs and the hydrophilic wetting gradient. We apply an easily operating size separation technique and only non-toxic media. This research contributes to the large-scale fabrication of various optical devices based on resonant high-refractive index nanostructures by ecologically friendly self-assembly techniques.
Collapse
Affiliation(s)
- Marina Karsakova
- Department of Physics and Engineering, ITMO University, Lomonosova Street 9, St. Petersburg191002, Russia
| | - Nadezhda Shchedrina
- Institute of Laser Technologies, ITMO University14-16 Grivtsova Lane, St. Petersburg190031, Russia
| | - Artur Karamyants
- Institute of Laser Technologies, ITMO University14-16 Grivtsova Lane, St. Petersburg190031, Russia
| | - Ekaterina Ponkratova
- Department of Physics and Engineering, ITMO University, Lomonosova Street 9, St. Petersburg191002, Russia
| | - Galina Odintsova
- Institute of Laser Technologies, ITMO University14-16 Grivtsova Lane, St. Petersburg190031, Russia
| | - Dmitry Zuev
- Department of Physics and Engineering, ITMO University, Lomonosova Street 9, St. Petersburg191002, Russia
| |
Collapse
|
9
|
Song T, Wu X, Xu J, Ye H, Shi W. Two-Level Optical Birefringence Created by Evaporation-Induced Polymer Crystallization in Sessile Droplets. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haimu Ye
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
10
|
Zhang X, Kang S, Adstedt K, Kim M, Xiong R, Yu J, Chen X, Zhao X, Ye C, Tsukruk VV. Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials. Nat Commun 2022; 13:5804. [PMID: 36192544 PMCID: PMC9530119 DOI: 10.1038/s41467-022-33615-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination. Naturally derived biopolymers attracted great interest to construct photonic materials but traditional processing commonly results in non-uniform organization across largescale areas. Here, the authors report a uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles enabling transformation from helicoidal cholesteric to uniaxial nematic phase with near-perfect orientation.
Collapse
Affiliation(s)
- Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Katarina Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.,State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Juan Yu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Xinran Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xulin Zhao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
11
|
Wang H, Shao R, Meng X, He Y, Shi Z, Guo Z, Ye C. Programmable Birefringent Patterns from Modulating the Localized Orientation of Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36277-36286. [PMID: 35916232 DOI: 10.1021/acsami.2c12205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Birefringence has been attracting broad attention due to its strong potential for applications in biomedicine and optics, such as biomedical diagnosis, colorimetric sensing, retardant, and polarization encoding. However, engineering architectures with precisely controllable birefringence remains a challenge due to the lack of effective modulation of the localized orientation. Here, by taking advantage of the inherently one-dimensional (1D) anisotropic structure of cellulose nanocrystals (CNCs), we demonstrate an approach to tune the alignment of CNCs with a well-controllable orientation at localized preciseness, which is in contrast to the previously reported unidirectional/radical orientation of CNC-based birefringent structures. The localized modulation of CNC orientation is facilitated by directing the 1D nanocrystals to align along the template periphery and the migrated three-phase contact line during the evaporation. The resultant CNC films exhibit birefringent extinction patterns under polarized light, in which versatile pattern designs can be obtained by employing templates with different shapes and template arrays with varied layouts. Due to the locally modulated orientation of CNCs, the films indicate "kaleidoscope-like" dynamically transformable designs of the birefringent patterns depending on the polarized angle, which has barely been observed previously. Furthermore, an N-nary encoding system for abundant information storage is demonstrated based on the sunlight-transparent CNC films, but with visible extinction patterns under polarized light, which is promising for encryptions, anticounterfeiting, and imaging, enriching the attractive research area of bio-based photonics.
Collapse
Affiliation(s)
- Han Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rongrong Shao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Liu H, Wang Y, Shi Z, Tan D, Yang X, Xiong L, Li G, Lei Y, Xue L. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. SMALL METHODS 2022; 6:e2200461. [PMID: 35521951 DOI: 10.1002/smtd.202200461] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Structural colors from photonic crystals (PCs) have attracted emerging attention in the research area of wearable sensors. Conventional self-assembly of PC takes days to weeks. Here, a fast self-assembly method of PC with horizontal precipitation of silica nanoparticles (NPs) in a polydimethylsiloxane fence, which can be completed within 1-4 h depending on the fence parameters, is introduced. The resultant PC exhibits tunable structural colors in the entire visible spectrum. With infiltration of composite hydrogels containing acrylic acid, acrylamide, chitosan, and carbon nanotubes (CNTs) into the gaps of NPs to form an inverse opal PC, a structural color hydrogel that can quickly respond to different stimuli, including strain and temperature, is obtained. Moreover, with the addition of CNTs, the composite PC hydrogel can also output an electronic signal together with optical color changes. Based on these extraordinary responsive behaviors, the PC hydrogel sensor for quantitative feedback to external stimuli of stretching, bending, pressing, and thermal stimuli, with brilliant color change and electronic signal outputs simultaneously, is demonstrated. This fast-assembled PC hydrogel with excellent responsive properties has great potential for applications in wearable devices, mechanical sensors, temperature sensors, and colorimetric displays.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yan Wang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Zhekun Shi
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Di Tan
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Xichen Yang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Lingheng Xiong
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|