1
|
Seo D, Choi BH, La JA, Kim Y, Kang T, Kim HK, Choi Y. Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402919. [PMID: 39221684 DOI: 10.1002/smll.202402919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Multi-biomarker analysis can enhance the accuracy of the single-biomarker analysis by reducing the errors caused by genetic and environmental differences. For this reason, multi-biomarker analysis shows higher accuracy in early and precision diagnosis. However, conventional analysis methods have limitations for multi-biomarker analysis because of their long pre-processing times, inconsistent results, and large sample requirements. To solve these, a fast and accurate precision diagnostic method is introduced for lung cancer by multi-biomarker profiling using a single drop of blood. For this, surface-enhanced Raman spectroscopic immunoassay (SERSIA) is employed for the accurate, quick, and reliable quantification of biomarkers. Then, it is checked the statistical relation of the multi-biomarkers to differentiate between healthy controls and lung cancer patients. This approach has proven effective; with 20 µL of blood serum, lung cancer is diagnosed with 92% accuracy. It also accurately identifies the type and stage of cancer with 87% and 85%, respectively. These results show the importance of multi-biomarker analysis in overcoming the challenges posed by single-biomarker diagnostics. Furthermore, it markedly improves multi-biomarker-based analysis methods, illustrating its important impact on clinical diagnostics.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ju A La
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Youngjae Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
LeeVan E, Pinsky P. Predictive Performance of Cell-Free Nucleic Acid-Based Multi-Cancer Early Detection Tests: A Systematic Review. Clin Chem 2024; 70:90-101. [PMID: 37791504 DOI: 10.1093/clinchem/hvad134] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Cancer-screening tests that can detect multiple cancer types, or multi-cancer early detection (MCED) tests, have emerged recently as a potential new tool in decreasing cancer morbidity and mortality. Most MCED assays are based on detecting cell-free tumor DNA (CF-DNA) in the blood. MCEDs offer the potential for screening for cancer organ sites with high mortality, both with and without recommended screening. However, their clinical utility has not been established. Before clinical utility can be established, the clinical validity of MCEDs, i.e., their ability to predict cancer status, must be demonstrated. In this study we performed a systematic review of the predictive ability for cancer of cell-free-nucleic acid-based MCED tests. CONTENT We searched PubMed for relevant publications from January 2017 to February 2023, using MeSH terms related to multi-cancer detection, circulating DNA, and related concepts. Of 1811 publications assessed, 61 were reviewed in depth and 20 are included in this review. For almost all studies, the cancer cases were assessed at time of diagnosis. Most studies reported specificity (generally 95% or higher) and overall sensitivity (73% median). The median number of cancer types assessed per assay was 5. Many studies also reported sensitivity by stage and/or cancer type. Sensitivity generally increased with stage. SUMMARY To date, relatively few published studies have assessed the clinical validity of MCED tests. Most used cancer cases assessed at diagnosis, with generally high specificity and variable sensitivity depending on cancer type and stage. The next steps should be testing in the intended-use population, i.e., asymptomatic persons.
Collapse
Affiliation(s)
- Elyse LeeVan
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Paul Pinsky
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|