1
|
Chen C, Love CM, Carnahan CF, Ganar KA, Parikh AN, Deshpande S. Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation. ACS NANO 2025; 19:20550-20563. [PMID: 40293809 DOI: 10.1021/acsnano.4c18971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Living cells orchestrate a myriad of biological reactions within a highly complex and crowded environment. A major factor responsible for such seamless assembly is the preferential interactions between the constituent macromolecules, that can drive demixing to produce coexisting phases and thus provide dynamic intracellular compartmentalization. However, the way multiple-phase separation phenomena, occurring simultaneously within the cytoplasmic space, influence each other is still largely unknown. Here, we show that the interplay between segregative and associative phase separation within cell-mimicking confinements can lead to rich dynamics between multiple phases and the lipid boundary. Using on-chip microfluidic systems, we encapsulate the associative and segregative components and externally trigger their phase separation within cell-sized vesicles. We find that segregative phases create microdomains and tend to dictate the fate of associative components by acting as molecular recruiters, membrane-targeting agents, and initiators of condensation. The obtained multiphase architecture provides an isolated microenvironment for condensates, restricting their molecular communication as well as diffusive motion, and can further lead to global shape transformation of the confinement itself in the form of wetted, hierarchical domains at the lipid membrane. In conclusion, we propose segregative phase separation as a universal condensation regulation strategy by managing their molecular distribution, process initiation, and spatial localization, including membrane interaction. The presented interplay between the two phase separation systems suggests a distinct design principle in constructing complex synthetic cells and controlling the behavior of artificial membraneless organelles within.
Collapse
Affiliation(s)
- Chang Chen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Caroline M Love
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Christopher F Carnahan
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Atul N Parikh
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 636921 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637551 Singapore
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Sivasankar VS, Zia RN. The Matter/Life Nexus in Biological Cells. Annu Rev Chem Biomol Eng 2025; 16:409-432. [PMID: 40489303 DOI: 10.1146/annurev-chembioeng-100722-104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and "what I cannot create, I do not understand," in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.
Collapse
Affiliation(s)
- Vishal S Sivasankar
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| | - Roseanna N Zia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| |
Collapse
|
3
|
Seo H, Lee HS, Lee H. Salt-Bridge-Mediated Coacervate-to-Vesicle Transformation in Arginine-Rich Coacervates. ACS NANO 2025; 19:16890-16902. [PMID: 40260840 DOI: 10.1021/acsnano.5c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Polypeptide-based liquid-liquid phase separation (LLPS) has received considerable attention as it governs the formation of membraneless organelles in cells. However, the detailed mechanistic understanding of how one of the most prevalent cationic amino acids in proteins, arginine, interacts with various biomolecules to induce phase separation and undergo morphogenesis remains to be resolved. Herein, we report the phase separation behavior and transformation of arginine-rich coacervates into vesicular structures upon introducing polyphosphates. Transformation into vesicles was shown to occur independent of the initial anionic counterparts and was driven by salt-bridge interactions between guanidinium groups of arginine residues and phosphates. We also investigate the role of intermolecular forces and ionic effects on the morphological transformation and further exploit their potential in the assembly of artificial tissue-like constructs. Overall, our findings underpin a unifying principle for vesicle transformation from arginine-rich coacervates and their potency for reconstituting hierarchical biological microcompartments.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Su Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
4
|
Hazegh Nikroo A, Altenburg WJ, van Veldhuisen TW, Brunsveld L, van Hest JCM. Spatiotemporal Control Over Protein Release from Artificial Cells via a Light-Activatable Protease. Adv Biol (Weinh) 2025; 9:e2400353. [PMID: 39334525 PMCID: PMC12078871 DOI: 10.1002/adbi.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The regulation of protein uptake and secretion by cells is paramount for intercellular signaling and complex multicellular behavior. Mimicking protein-mediated communication in artificial cells holds great promise to elucidate the underlying working principles, but remains challenging without the stimulus-responsive regulatory machinery of living cells. Therefore, systems to precisely control when and where protein release occurs should be incorporated in artificial cells. Here, a light-activatable TEV protease (LaTEV) is presented that enables spatiotemporal control over protein release from a coacervate-based artificial cell platform. Due to the presence of Ni2+-nitrilotriacetic acid moieties within the coacervates, His-tagged proteins are effectively sequestered into the coacervates. LaTEV is first photocaged, effectively blocking its activity. Upon activation by irradiation with 365 nm light, LaTEV cleaves the His-tags from sequestered cargo proteins, resulting in their release. The successful blocking and activation of LaTEV provides control over protein release rate and triggerable protein release from specific coacervates via selective irradiation. Furthermore, light-activated directional transfer of proteins between two artificial cell populations is demonstrated. Overall, this system opens up avenues to engineer light-responsive protein-mediated communication in artificial cell context, which can advance the probing of intercellular signaling and the development of protein delivery platforms.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Bio‐Organic ChemistryDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Wiggert J. Altenburg
- Laboratory of Bio‐Organic ChemistryDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Thijs W. van Veldhuisen
- Laboratory of Bio‐Organic ChemistryDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Laboratory of Chemical BiologyDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Jan C. M. van Hest
- Laboratory of Bio‐Organic ChemistryDepartment of Biomedical Engineeringand Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
5
|
Zhao C, Wang X, Li L, Huang H, Wu B, Zhang L, Huang X. Biomineralization-Inspired Membranization Toward Structural Enhancement of Coacervate Community. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417832. [PMID: 40089856 PMCID: PMC12079539 DOI: 10.1002/advs.202417832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Indexed: 03/17/2025]
Abstract
The design and assembly of protocell models that can mimic the features and functions of life present a significant research challenge with the potential for far-reaching impact. Inspired by the natural phenomenon of microbe-induced mineralization, a way is developed to induce the spontaneous formation of mineralized membrane on the surface of coacervate droplets utilizing Fe3+ ions. In particular, the effect of Fe3+ ions on the microstructure of droplets at the molecular level is dissected by combining theoretical and experimental approaches. The reversible formation process of membrane can be regulated by redox reactions involving Fe2+/Fe3+ ions within the coacervate. The formation of mineralized membrane not only enhances the stability of the coacervate droplets and prevents aggregation and coalescence, but also allows the aggregation of adjacent droplets together. The membranized coacervate assemblages retain the inherent properties of biomolecule sequestration and enzyme catalysis, and also demonstrate excellent resistance to high temperatures and pressures as well as good stability for over 30 days. This study will offer a new platform for the assembly of coacervate-based life-like biomimetic systems, as well as enhance the understanding of the interactions underlying various biological phenomena at the molecular level.
Collapse
Affiliation(s)
- Chunyu Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271016China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinHeilongjiang150001China
| | - Lianning Li
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Hu Huang
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Bingzhao Wu
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Lei Zhang
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinHeilongjiang150001China
| |
Collapse
|
6
|
Higashi SL, Ikeda M. Coacervates Composed of Low-Molecular-Weight Compounds- Molecular Design, Stimuli Responsiveness, Confined Reaction. Adv Biol (Weinh) 2025; 9:e2400572. [PMID: 39936890 PMCID: PMC12078862 DOI: 10.1002/adbi.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/09/2025] [Indexed: 02/13/2025]
Abstract
The discovery of coacervation within living cells through liquid-liquid phase separation has inspired scientists to investigate its fundamental principles and significance. Indeed, coacervates composed of low-molecular-weight compounds based on supramolecular strategy can offer valuable models for biomolecular condensates and useful tools. This mini-review highlights recent findings and advances in coacervates (artificial condensates), primarily composed of low-molecular-weight compounds, with focuses on their molecular design, stimuli responsiveness, and controlled reactions within or leading to the coacervates.
Collapse
Affiliation(s)
- Sayuri L. Higashi
- Institute for Advanced StudyGifu University1‐1 YanagidoGifu501–1193Japan
- United Graduate School of Drug Discovery and Medical Information SciencesGifu University1‐1 YanagidoGifu501–1193Japan
- Center for One Medicine Innovative Translational Research (COMIT)Institute for Advanced StudyGifu University1‐1 YanagidoGifu501–1193Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information SciencesGifu University1‐1 YanagidoGifu501–1193Japan
- Center for One Medicine Innovative Translational Research (COMIT)Institute for Advanced StudyGifu University1‐1 YanagidoGifu501–1193Japan
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University1‐1 YanagidoGifu501–1193Japan
- Institute for Glyco‐core Research (iGCORE)Gifu University1‐1 YanagidoGifu501–1193Japan
- Innovation Research Center for Quantum MedicineGraduate School of MedicineGifu University1‐1 YanagidoGifu501–1193Japan
| |
Collapse
|
7
|
Javed S, Spruijt E. Resilient Membranized Coacervates Formed through Spontaneous Wrapping of Heat-Destabilized Lipid Bilayers around Coacervate Droplets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412312. [PMID: 40116289 PMCID: PMC12097097 DOI: 10.1002/advs.202412312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Membranes and the membraneless biocondensates help organize cells and work synergistically to drive cellular processes. Separately, membrane-bound and membraneless compartments face difficulties as stable protocells or synthetic cell systems. Here, we present a new method to create membranized coacervates (MCs) for coacervates with any surface charge and a wide range of phospholipid membrane compositions. MCs are formed when liposomes, destabilized using heat and divalent ions, are mixed with coacervate dispersions. Unlike previous reports of hybrid coacervates surrounded by membranes, the MC membranes form an effective barrier also against small molecules, including calcein and TAMRA. The MC membranes provide excellent stability to the protocells at pH 2-10, salt concentrations of up to 0.5 м, hypotonic and hypertonic conditions, and repeated freeze-thaw cycles. MCs performed better in all the tested conditions than both coacervates and liposomes. We attribute this behavior to the increased stability that coacervates and liposomes confer to each other when together. MC membranes are unilamellar and fluid, allowing lateral lipid diffusion, and the lipids are more densely packed compared to their corresponding liposomes. MCs can help us understand how stable primitive cells might have emerged and build advanced synthetic cells with enhanced stability and selectivity.
Collapse
Affiliation(s)
- Sadaf Javed
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6523 AJThe Netherlands
| | - Evan Spruijt
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6523 AJThe Netherlands
| |
Collapse
|
8
|
Jimenez Granda ER, Karoui H, Brilland X, Baret JC, Martin N. Light-Responsive Mononucleotide Coacervates. Chemistry 2025:e202501109. [PMID: 40244931 DOI: 10.1002/chem.202501109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Liquid-liquid phase separation (LLPS) is central to the formation of biomolecular condensates in modern cells and is also explored as a mechanism for assembling protocells. Phase-separated droplets provide dynamic micro-environments that concentrate reactants, enhance reactions, and allow molecular exchange, essential for both cellular regulation, and adaptive compartmentalization. While modern cells achieve dynamic LLPS through enzymatic and metabolic pathways, protocells may be designed to harness external stimuli such as pH, temperature, redox potential, or light. However, existing studies of light-responsive coacervates rely on complex biomolecules, limiting their use as minimal platforms of energy-driven phase separation. Here, we develop a minimal system of light-responsive coacervates composed of low-molecular-weight species: mononucleotides and azobenzene-based amphiphiles with varying charge valency. These coacervates undergo reversible phase transitions through azobenzene photoisomerization, with their behavior governed by charge valency and nucleotide structure. We demonstrate that coacervates formed with high-valency azobenzenes remain stable under UV irradiation but exhibit significant property changes, while those with low-valency azobenzenes dissolve, enabling light-controlled nucleotide release. Additionally, we achieved hierarchical droplet organization and light-actuated biomolecular localization within multiphase systems. Overall, these findings establish a minimal platform for designing light-responsive synthetic protocells, providing insights into dynamic compartmentalization in de novo life-like systems.
Collapse
Affiliation(s)
- Edison Rafael Jimenez Granda
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, Pessac, 33600, France
| | - Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, Pessac, 33600, France
| | - Xavier Brilland
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, Pessac, 33600, France
| | - Jean-Christophe Baret
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, Pessac, 33600, France
- Institut Universitaire de France, Paris, 75005, France
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, Pessac, 33600, France
| |
Collapse
|
9
|
Tang D, Zhu J, Wang H, Chen N, Wang H, Huang Y, Jiang L. Universal membranization of synthetic coacervates and biomolecular condensates towards ultrastability and spontaneous emulsification. Nat Chem 2025:10.1038/s41557-025-01800-4. [PMID: 40211087 DOI: 10.1038/s41557-025-01800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
Membranization of membraneless coacervates and condensates is emerging as a promising strategy to resolve their inherent susceptibility to fusion, ripening and environmental variations. Yet current membranization agents by design are largely limited to a subclass or a specific kind of coacervate or condensate systems. Here we develop a library of condensate-amphiphilic block polymers that can efficiently form a polymeric layer on the droplet interface for a wide spectrum of synthetic coacervates and biomolecular condensates. Condensate-amphiphilic block polymers are designed with a condenophilic block firmly anchored to the condensed phase, a condenophobic block extended to the dilute phase and a self-association block to promote membrane formation. Critical to our design is the condenophilic block of phenylboronic acid and amidoamine that target the disparate chemistry of condensed droplets via multivalent affinities. The condensate-amphiphilic block polymer membranes render the droplets mechanically robust against fusion, regulate interfacial properties such as permeability and stiffness, and substantially improve droplet tolerance to challenging conditions of temperature, salinity, pH and organic solvents.
Collapse
Affiliation(s)
- Da Tang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China.
| |
Collapse
|
10
|
Zhou Y, Maitz MF, Zhang K, Voit B, Appelhans D. Dynamic and Diverse Coacervate Architectures by Controlled Demembranization. J Am Chem Soc 2025; 147:12239-12250. [PMID: 40135632 DOI: 10.1021/jacs.5c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The dynamics of membranes are integral to regulating biological pathways in living systems, particularly in mediating intra- and extracellular communication between membraneless and membranized nano- and microcompartments. Mimicking these dynamics using biomimetic cell structures deepens our understanding of biologically driven processes, including morphological transformations, communication, and molecular sequestration within distinct environments (e.g., (membraneless) organelles, cytoplasm, cells, and the extracellular matrix). In this context, the demembranization of membranized coacervates represents a promising approach to endow them with additional functionalities and dynamic reconfiguration capabilities in response to external or biological stimuli. This versatility broadens their applicability in synthetic biology, systems biology, and biotechnology. Here, we present a strategy for controlled demembranization of membranized coacervate droplets. The membranized coacervates are created by coating membraneless coacervates with terpolymer-based nanoparticles to form a solid-like membrane. The addition of an anionic polysaccharide then triggers the demembranization process arising from electrostatic competition with the membrane components, resulting in polysaccharide-containing demembranized coacervate droplets. This membranization/demembranization process not only allows for the controlled structural reconfiguration of the coacervate entities but also varies their permeability toward (biological) (macro)molecules and nano- and microscale objects. Additionally, integrating an additional polymersome layer in this process facilitates the creation of bilayer and ″Janus-like″ membranized coacervates, advancing the development of coacervate protocells with hierarchical and asymmetric membrane structures. Our work highlights the control over both membranization and demembranization processes of coacervate protocells, establishing a platform for creating advanced protein-containing synthetic protocells with dynamic and diverse (membrane(less)) architectures.
Collapse
Affiliation(s)
- Yang Zhou
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden 01062, Germany
| | - Manfred F Maitz
- Division Polymer Biomaterials Science, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Kehu Zhang
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Brigitte Voit
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden 01062, Germany
| | - Dietmar Appelhans
- Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| |
Collapse
|
11
|
Wang D, Zhou L, Zhang X, Zhou Z, Huang Z, Gao N. Supramolecular Switching of Liquid-Liquid Phase Separation for Orchestrating Enzyme Kinetics. Angew Chem Int Ed Engl 2025; 64:e202422601. [PMID: 39833115 DOI: 10.1002/anie.202422601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions. Inspired by the structural feature of IDPs that facilitates LLPS, we designed a simplified phase-separating molecule, Nap-o-Nap, consisting of two naphthalene moieties linked by an ethylene glycol derivative. This compound exhibits LLPS under physiological conditions, forming coacervate microdroplets that undergo multiple cycles of disassembly and reassembly upon stoichiometric addition of Cucurbit[7]uril and Adamantane, respectively, based upon competitive host-guest interactions. Importantly, such reversible control offers a unique route to quantify entropically dominant nature (ΔS=14.0 cal ⋅ mol-1 ⋅ K-1) within the LLPS process, in which the binding affinity of host-guest interactions (ΔG=-14.9 kcal ⋅ mol-1) surpass that of the LLPS of Nap-o-Nap (ΔG=-2.1 kcal ⋅ mol-1), enabling the supramolecular regulation process. The supramolecularly switched LLPS, along with selective client recruitment and exclusion by resultant coacervates, provides a promising platform for either boosting or retarding enzymatic reactions, thereby orchestrating biological enzyme kinetics.
Collapse
Affiliation(s)
- Deyi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Lingying Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xiaokun Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zixiang Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zehuan Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ning Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
12
|
Burgstaller A, Madureira S, Staufer O. Synthetic cells in tissue engineering. Curr Opin Biotechnol 2025; 92:103252. [PMID: 39847957 DOI: 10.1016/j.copbio.2024.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation. Recent bottom-up approaches have also enabled synthetic cells to assemble into 3D structures with controlled intercellular interactions, creating tissue-like architectures. Despite these advancements, challenges remain in replicating multicellular behaviors and dynamic mechanical environments. Here, we review recent advancements in synthetic cell-based tissue formation and introduce a three-pillar framework to streamline the development of synthetic tissues. This approach, focusing on synthetic extracellular matrix integration, synthetic cell self-organization, and adaptive biomechanics, could enable scalable synthetic tissues engineering for regenerative medicine and drug development.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany
| | - Sara Madureira
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom.
| |
Collapse
|
13
|
Equy E, Ibarboure E, Grelet E, Lecommandoux S. Janus Polymeric Giant Vesicles on Demand: A Predictive Phase Separation Approach for Efficient Formation. J Am Chem Soc 2025; 147:9727-9738. [PMID: 40066799 DOI: 10.1021/jacs.4c18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical. Here, we propose a rational approach, using Flory-Huggins theory, to predict the self-assembly of amphiphilic block copolymers into asymmetric Janus polymersomes. Our predictions are experimentally validated by forming highly stable Janus giant unilamellar vesicles (JGUVs) with a remarkable yield exceeding 90% obtained from electroformation of various biocompatible block copolymers. We also present a general phase diagram correlating mixing energy with polymersome morphology, offering a valuable tool for JGUV design. These polymersomes can be extruded to achieve quasi-monodisperse vesicles while maintaining their Janus-like morphology, paving the way for their asymmetric functionalization and use as active carriers.
Collapse
Affiliation(s)
- Eloise Equy
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
| | - Eric Grelet
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | | |
Collapse
|
14
|
Li G, Yuan C, Yan X. Peptide-mediated liquid-liquid phase separation and biomolecular condensates. SOFT MATTER 2025; 21:1781-1812. [PMID: 39964249 DOI: 10.1039/d4sm01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a cornerstone of cellular organization, driving the formation of biomolecular condensates that regulate diverse biological processes and inspire innovative applications. This review explores the molecular mechanisms underlying peptide-mediated LLPS, emphasizing the roles of intermolecular interactions such as hydrophobic effects, electrostatic interactions, and π-π stacking in phase separation. The influence of environmental factors, such as pH, temperature, ionic strength, and molecular crowding on the stability and dynamics of peptide coacervates is examined, highlighting their tunable properties. Additionally, the unique physicochemical properties of peptide coacervates, including their viscoelastic behavior, interfacial dynamics, and stimuli-responsiveness, are discussed in the context of their biological relevance and engineering potential. Peptide coacervates are emerging as versatile platforms in biotechnology and medicine, particularly in drug delivery, tissue engineering, and synthetic biology. By integrating fundamental insights with practical applications, this review underscores the potential of peptide-mediated LLPS as a transformative tool for advancing science and healthcare.
Collapse
Affiliation(s)
- Guangle Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
16
|
Koppayithodi S, Singh N. Chemically Triggered Reactive Coacervates Show Life-Like Budding and Membrane Formation. J Am Chem Soc 2025; 147:5293-5299. [PMID: 39875119 PMCID: PMC11826989 DOI: 10.1021/jacs.4c16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation. We find that the coacervate composition critically influences reaction rates and product distribution and guides the hierarchical self-assembly. This work showcases "reactive" coacervates as a versatile platform to influence reaction and self-assembly pathways for controlled supramolecular synthesis and hierarchical self-organization in confined spaces.
Collapse
Affiliation(s)
- Sudeep Koppayithodi
- Institute of Advanced Materials
(INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Nishant Singh
- Institute of Advanced Materials
(INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain
| |
Collapse
|
17
|
Oki O, Noguchi S, Nakayama S, Yamagishi H, Kuwabara J, Kanbara T, Yamamoto Y. Spontaneous Formation of π-Conjugated Polymeric Colloidal Molecules Through Stepwise Coacervation and Symmetric Compartmentalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404934. [PMID: 39385637 PMCID: PMC11798348 DOI: 10.1002/smll.202404934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Coacervation, the phase separation of liquid induced by polymeric solutes, sometimes results in the formation of oligomeric clusters of droplets. The morphology of the clusters is non-uniform because the clustering is a consequence of the random collisions of the drifting droplets. Here we report distinctively organized coacervation, yielding colloidal molecules with monodisperse size, morphological symmetry, and compositional heterogeneity. We investigate the coacervation of a mixture of two types of synthetic polymers and find that one of the polymers coacervates first and serves as a core droplet, on which the other polymer coacervates subsequently to form satellite droplets. The satellite droplets arrange themselves symmetrically around the core and solidify without losing the morphology. The number of satellites and their symmetry are modulable depending on the chemical affinity and the diameter of the droplets. This finding highlights the capability of coacervation as a non-templated and non-covalent pathway to form aspherical colloidal materials with structural and functional complexity.
Collapse
Affiliation(s)
- Osamu Oki
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
- Institute for Complex Molecular Systems and Laboratory of Macro‐molecular and Organic ChemistryEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Shun‐ichiro Noguchi
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Sota Nakayama
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Hiroshi Yamagishi
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Junpei Kuwabara
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Takaki Kanbara
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Yohei Yamamoto
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| |
Collapse
|
18
|
Ren T, Liang D. Biphasic Coacervation Controlled by Kinetics as Studied by De Novo-Designed Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1756-1764. [PMID: 39811981 DOI: 10.1021/acs.langmuir.4c04114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)6SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values. Only in the case where the charge density is constant and the electrostatic interaction is the major driving force for Coacervation is the effect of kinetics negligible. When pH-dependent electrostatic interaction and hydrophobic interaction are involved or the peptides form secondary structures, the Coacervation process is then path-dependent, indicating that the kinetics controls the phase separation process. The Coacervation by combining two different peptides suggests that the peptide with a higher charge density plays a leading role in the early stage, while the cooperation of both peptides takes over afterward. Our work demonstrates that it is normal to observe coacervates with different morphologies and functions due to kinetic control, especially in living cells. Peptides with minimized sequences are a practical approach to reveal the mechanism of Coacervation processes controlled by kinetics.
Collapse
Affiliation(s)
- Tianhao Ren
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Kim Y, Zheng Y. Thermophilic Behavior of Heat-Dissociative Coacervate Droplets. NANO LETTERS 2024; 24:15964-15972. [PMID: 39573916 DOI: 10.1021/acs.nanolett.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In exploring the genesis of life, liquid-liquid phase-separated coacervate droplets have been proposed as primitive protocells. Within the hydrothermal hypothesis, these droplets would emerge from molecule-rich hot fluids and thus be subjected to temperature gradients. Investigating their thermophoretic behavior can provide insights into protocell footprints in thermal landscapes, advancing our understanding of life's origins. Here, we report the thermophilic behavior of heat-dissociative droplets, contrary to the intuition that heat-associative condensates would prefer hotter areas. This aspect implies the preferential presence of heat-dissociative primordial condensates near hydrothermal environments, facilitating molecular incorporation and biochemical syntheses. Additionally, our investigations reveal similarities between thermophoretic and electrophoretic motions, dictated by molecular redistribution within droplets due to their fluid nature, which necessitates revising current electrophoresis frameworks for surface charge characterization. Our study elucidates how coacervate droplets navigate thermal and electric fields, reveals their thermal-landscape-dependent molecular characteristics, and bridges foundational theories of early life: the hydrothermal and condensate-as-protocell hypotheses.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yuebing Zheng
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
21
|
Shin J, Shin H, Lee SH, Jang JD, Kim HJ. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Lett 2024; 13:1678-1685. [PMID: 39570941 DOI: 10.1021/acsmacrolett.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Collapse
Affiliation(s)
- Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Heewoon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Sang-Ho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| |
Collapse
|
22
|
You B, Chen CH. Fluidic Membrane-Bound Protocells Enabling Versatile Assembly of Functional Nanomaterials for Biomedical Applications. ACS NANO 2024; 18:33545-33554. [PMID: 39615041 DOI: 10.1021/acsnano.4c11349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The development of membrane-bound protocells, which process cascade biochemical reactions in distinct microcompartments, marks a significant advancement in soft systems. However, many synthesized protocells with cell membrane-like structures are prone to rupturing in biological environments and are challenging to functionalize, limiting their biomedical applications. In this study, we explore the liquid-liquid phase separation of tannic acid (TA) and polyethylene glycol (PEG) to form coacervate droplets. Upon introducing polyvinylpyrrolidone (PVP) molecules, a dense hydrogen bonding network spontaneously forms at the surfaces of the coacervate droplets, resulting in robust fluidic membrane-bound protocells (FMPs). These protocells can be flexibly postfunctionalized to incorporate functional nanomaterials via electrostatic attraction, enabling the design of cascade reactions for biomedical applications. To demonstrate this, nanozymes (Pt/CeO2) are assembled onto Fe3+/FMPs, resulting in functional FMPs (Pt/CeO2@Fe3+/FMPs) capable of catalyzing the degradation of uric acid and its harmful byproduct, H2O2, offering potential treatments for gout.
Collapse
Affiliation(s)
- Baihao You
- Department of Biomedical Engineering, City University of Hong Kong, Y6700, 6/F, Yellow Zone, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Y6700, 6/F, Yellow Zone, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
23
|
Sharma S, Belluati A, Kumar M, Dhiman S. Enzymatic Reaction Network-Driven Polymerization-Induced Transient Coacervation. Angew Chem Int Ed Engl 2024:e202421620. [PMID: 39655501 DOI: 10.1002/anie.202421620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
A living cell has a highly complex microenvironment whereas numerous enzyme-driven processes are active at once. These procedures are incredibly accurate and efficient, although comparable control has not yet been established in vitro. Here, we design an enzymatic reaction network (ERN) that combines antagonistic and orthogonal enzymatic networks to produce adjustable dynamics of ATP-fueled transient coacervation. Using horseradish peroxidase (HRP)-mediated Biocatalytic Atom Transfer Radical Polymerization (BioATRP), we synthesized poly(dimethylaminoethyl methacrylate), which subsequently formed coacervates with ATP. We rationally explored enzymatic control over coacervation and dissolution, using orthogonal and antagonistic enzyme pairs viz., alkaline phosphatase, Creatine phosphokinase, hexokinase, esterase, and urease. ATP-fuelled coacervates also demonstrate the enzymatic catalysis to prove its potential to be exploited as a cellular microreactor. Additionally, we developed ERN-polymerization-induced transient coacervation (ERN-PIC), with complete control over the system, polymerization, coacervation, and dissolution. Notably, the coacervation process itself determines functional properties, as seen in selective cargo uptake. The strategy offers cutting-edge biomimetic applications, and insights into cellular compartmentalization by bridging the gap between synthetic and biological systems. The development of temporally programmed coacervation is promising for the spatial arrangement of multienzyme cascades, and offers novel ideas on the architecture of artificial cells.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| | - Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Mohit Kumar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| | - Shikha Dhiman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| |
Collapse
|
24
|
Deng X, Qi C, Meng S, Dong H, Wang T, Liu Z, Kong T. All-Aqueous Embedded 3D Printing for Freeform Fabrication of Biomimetic 3D Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406825. [PMID: 39520386 DOI: 10.1002/adma.202406825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
All-aqueous embedded 3D printing, which involves extruding inks in an aqueous bath, has emerged as a transformative platform for the freeform fabrication of 3D constructs with precise control. The use of a supporting bath not only enables the printing of arbitrarily designed 3D constructs but also broadens ink selection for various soft matters, advancing the wide application of this technology. This review focuses on recent progress in the freeform preparation of 3D constructs using all-aqueous embedded 3D printing. It begins by discussing the significance of ultralow interfacial tension in all-liquid embedded printing and highlights the fundamental concepts and properties of all-aqueous system. The review then introduces recent advances in all-aqueous embedded 3D printing and clarifies the key factors affecting printing stability and shape fidelity, aiming to guide expansion and assessment of emerging printing systems used for various representative applications. Furthermore, it proposes the potential scope and applications of this technology, including in vitro models, cytomimetic microreactors, and soft ionic electronics. Finally, the review discusses the challenges facing current all-aqueous embedded 3D printing and offers future perspectives on possible improvements and developments.
Collapse
Affiliation(s)
- Xiaokang Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Haifeng Dong
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, Guangdong, 516081, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
25
|
Yetiskin E, Erdem I, Gucluer S, Ozcelik A. A Simple Pump-Free Approach to Generating High-Throughput Microdroplets Using Oscillating Microcone Arrays. MICROMACHINES 2024; 15:1365. [PMID: 39597177 PMCID: PMC11597012 DOI: 10.3390/mi15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
Droplet generation is crucial in various scientific and industrial fields, such as drug delivery, diagnostics, and inkjet printing. While microfluidic platforms enable precise droplet formation, traditional methods often require costly and complex setups, limiting their accessibility. This study introduces a simple, low-cost approach using an off-the-shelf unit and a 3D-printed reservoir. The device, equipped with a driver board, piezo-ring transducer, and a metal sheet with holes, generates oil-in-water (O/W) droplets with an average diameter of 4.62 ± 0.67 µm without external fluid pumps. Its simplicity, cost-effectiveness, and scalability make it highly suitable for both lab-on-chip and industrial applications, demonstrating the feasibility of large-scale uniform droplet production.
Collapse
Affiliation(s)
- Erturan Yetiskin
- Graduate School of Natural and Applied Science, Aydin Adnan Menderes University, Aydin 09010, Türkiye;
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Ilayda Erdem
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Sinan Gucluer
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Adem Ozcelik
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| |
Collapse
|
26
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Le NTK, Park E, Kim H, Park J, Kang K. Viscosity Regulation of Chemically Simple Condensates. Biomacromolecules 2024; 25:5959-5967. [PMID: 39166772 DOI: 10.1021/acs.biomac.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study investigates the viscosity and liquid-solid transition behavior of biomolecular condensates formed by polyarginine chains (Rx) of varying lengths and citric acid (CA) derivatives. By condensing Rx chains of various lengths with CA derivatives, we showed that the shorter Rx chains attenuate the high aggregation tendency of the longer chains when condensed with CA. A mixture of different Rx lengths exhibited uniform intracondensate distribution, while its mobility largely depended on the ratio of the longer Rx chain. Our findings demonstrate a simple method to modulate condensate properties by adjusting the composition of scaffold molecules, shedding light on the role of molecular composition in controlling condensate viscosity and transition dynamics. This research contributes to a deeper understanding of biomolecular condensation processes and offers insights into potential strategies for manipulating condensate properties for various applications, including in the fields of synthetic biology and disease therapeutics in the future.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Eunbin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
28
|
Hakami N, Burgstaller A, Gao N, Rutz A, Mann S, Staufer O. Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies. Adv Healthc Mater 2024; 13:e2303334. [PMID: 38794823 DOI: 10.1002/adhm.202303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Microfluidics plays a pivotal role in organ-on-chip technologies and in the study of synthetic cells, especially in the development and analysis of artificial cell models. However, approaches that use synthetic cells as integral functional components for microfluidic systems to shape the microenvironment of natural living cells cultured on-chip are not explored. Here, colloidosome-based synthetic cells are integrated into 3D microfluidic devices, pioneering the concept of synthetic cell-based microenvironments for organs-on-chip. Methods are devised to create dense and stable networks of silica colloidosomes, enveloped by supported lipid bilayers, within microfluidic channels. These networks promote receptor-ligand interactions with on-chip cultured cells. Furthermore, a technique is introduced for the controlled release of growth factors from the synthetic cells into the channels, using a calcium alginate-based hydrogel formation within the colloidosomes. To demonstrate the potential of the technology, a modular plug-and-play lymph-node-on-a-chip prototype that guides the expansion of primary human T cells by stimulating receptor ligands on the T cells and modulating their cytokine environment is presented. This integration of synthetic cells into microfluidic systems offers a new direction for organ-on-chip technologies and suggests further avenues for exploration in potential therapeutic applications.
Collapse
Affiliation(s)
- Niki Hakami
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angela Rutz
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
| |
Collapse
|
29
|
Yin C, Yu X, Chen C, Jin X, Tian L. Engineering the Spatial Distribution of Amphiphilic Molecule within Complex Coacervate Microdroplet via Modulating Charge Strength of Polyelectrolytes. SMALL METHODS 2024; 8:e2301760. [PMID: 38725320 DOI: 10.1002/smtd.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Indexed: 10/24/2024]
Abstract
The investigation of the interplay between complex coacervate microdroplets and amphiphilic molecules offers valuable insights into the processes of prebiotic compartmentalization on the early Earth and presents a promising avenue for future advancements in biotechnology. Herein, the interaction between complex coacervate microdroplets and amphiphilic molecule (decanoic acid) is systematically investigated by varying charge strengths of negatively charged polyelectrolytes (DNA and PAA) and positively charged polyelectrolytes (PDDA and DEAE-Dextran). It is found that the interaction between amphiphilic molecule and complex coacervate microdroplets depended on the delicate balance between the interaction between decanoic acid and polyelectrolyte and the interaction between two polyelectrolytes. The different spatial distribution of amphiphilic molecule can result in differences in the internal microenvironment, which can further alter the uptake or exclusion of small molecules and biomolecules with different charges and polarities and functional biological process.
Collapse
Affiliation(s)
- Chengying Yin
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Chen
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xiaofen Jin
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Liangfei Tian
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
30
|
Maruyama T, Gong J, Takinoue M. Temporally controlled multistep division of DNA droplets for dynamic artificial cells. Nat Commun 2024; 15:7397. [PMID: 39191726 DOI: 10.1038/s41467-024-51299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.
Collapse
Affiliation(s)
- Tomoya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
31
|
Zhou Y, Zhang K, Moreno S, Temme A, Voit B, Appelhans D. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures. Angew Chem Int Ed Engl 2024; 63:e202407472. [PMID: 38847278 DOI: 10.1002/anie.202407472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/25/2024]
Abstract
The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.
Collapse
Affiliation(s)
- Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, 01307, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Fetscherstraße 74, Dresden, 01307, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| |
Collapse
|
32
|
Saha R, Choi JA, Chen IA. Protocell Effects on RNA Folding, Function, and Evolution. Acc Chem Res 2024; 57:2058-2066. [PMID: 39005057 PMCID: PMC11308369 DOI: 10.1021/acs.accounts.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Creating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism. The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA. Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles. The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Jongseok A. Choi
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Irene A. Chen
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
33
|
Singh A, Thutupalli S, Kumar M, Ameta S. Constrained dynamics of DNA oligonucleotides in phase-separated droplets. Biophys J 2024; 123:1458-1466. [PMID: 38169216 PMCID: PMC11163293 DOI: 10.1016/j.bpj.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding the dynamics of biomolecules in complex environments is crucial for elucidating the effect of condensed and heterogeneous environments on their functional properties. A relevant environment-and one that can also be mimicked easily in vitro-is that of phase-separated droplets. While phase-separated droplet systems have been shown to compartmentalize a wide range of functional biomolecules, the effects of internal structuration of droplets on the dynamics and mobility of internalized molecules remain poorly understood. Here, we use fluorescence correlation spectroscopy to measure the dynamics of short oligonucleotides encapsulated within two representative kinds of uncharged and charged phase-separated droplets. We find that the internal structuration controls the oligonucleotide dynamics in these droplets, revealed by measuring physical parameters at high spatiotemporal resolution. By varying oligonucleotide length and salt concentrations (and thereby charge screening), we found that the dynamics are significantly affected in the noncharged droplets compared to the charged system. Our work lays the foundation for unraveling and quantifying the physical parameters governing biomolecular transport in the condensed environment.
Collapse
Affiliation(s)
- Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| | - Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; Trivedi School of Biosciences, Ashoka University, Sonepat, India.
| |
Collapse
|
34
|
Ji Y, Qiao Y. Tuning interfacial fluidity and colloidal stability of membranized coacervate protocells. Commun Chem 2024; 7:122. [PMID: 38831043 PMCID: PMC11148010 DOI: 10.1038/s42004-024-01193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The cell membrane not only serves as the boundary between the cell's interior and the external environment but also plays a crucial role in regulating fundamental cellular behaviours. Interfacial membranization of membraneless coacervates, formed through liquid-liquid phase separation (LLPS), represents a reliable approach to constructing hierarchical cell-like entities known as protocells. In this study, we demonstrate the capability to modulate the interfacial membrane fluidity and thickness of dextran-bound coacervate protocells by adjusting the molecular weight of dextran or utilizing dextranase-catalyzed hydrolysis. This modulation allows for rational control over colloidal stability, interfacial molecular transport and cell-protocell interactions. Our work opens a new avenue for surface engineering of coacervate protocells, enabling the establishment of cell-mimicking structures and behaviours.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
35
|
Mangiarotti A, Aleksanyan M, Siri M, Sun T, Lipowsky R, Dimova R. Photoswitchable Endocytosis of Biomolecular Condensates in Giant Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309864. [PMID: 38582523 PMCID: PMC11187966 DOI: 10.1002/advs.202309864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Interactions between membranes and biomolecular condensates can give rise to complex phenomena such as wetting transitions, mutual remodeling, and endocytosis. In this study, light-triggered manipulation of condensate engulfment is demonstrated using giant vesicles containing photoswitchable lipids. UV irradiation increases the membrane area, which can be stored in nanotubes. When in contact with a condensate droplet, the UV light triggers rapid condensate endocytosis, which can be reverted by blue light. The affinity of the protein-rich condensates to the membrane and the reversibility of the engulfment processes is quantified from confocal microscopy images. The degree of photo-induced engulfment, whether partial or complete, depends on the vesicle excess area and the relative sizes of vesicles and condensates. Theoretical estimates suggest that utilizing the light-induced excess area to increase the vesicle-condensate adhesion interface is energetically more favorable than the energy gain from folding the membrane into invaginations and tubes. The overall findings demonstrate that membrane-condensate interactions can be easily and quickly modulated via light, providing a versatile system for building platforms to control cellular events and design intelligent drug delivery systems for cell repair.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Mina Aleksanyan
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
- Institute for Chemistry and BiochemistryFree University of BerlinTakustraße 314195BerlinGermany
| | - Macarena Siri
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
- Max Planck Queensland CentreScience Park Golm14476PotsdamGermany
| | - Tsu‐Wang Sun
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| |
Collapse
|
36
|
Seo H, Lee H. Programmable Enzymatic Reaction Network in Artificial Cell-Like Polymersomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305760. [PMID: 38627986 PMCID: PMC11200095 DOI: 10.1002/advs.202305760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Indexed: 06/27/2024]
Abstract
The ability to precisely control in vitro enzymatic reactions in synthetic cells plays a crucial role in the bottom-up design of artificial cell models that can recapitulate the key cellular features and functions such as metabolism. However, integration of enzymatic reactions has been limited to bulk or microfluidic emulsions without a membrane, lacking the ability to design more sophisticated higher-order artificial cell communities for reconstituting spatiotemporal biological information at multiple length scales. Herein, droplet microfluidics is utilized to synthesize artificial cell-like polymersomes with distinct molecular permeability for spatiotemporal control of enzymatic reactions driven by external signals and fuels. The presence of a competing reverse enzymatic reaction that depletes the active substrates is shown to enable demonstration of fuel-driven formation of sub-microcompartments within polymersomes as well as realization of out-of-equilibrium systems. In addition, the different permeability characteristics of polymersome membranes are exploited to successfully construct a programmable enzymatic reaction network that mimics cellular communication within a heterogeneous cell community through selective molecular transport.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| | - Hyomin Lee
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| |
Collapse
|
37
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
38
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
39
|
Abeysinghe AADT, Young EJ, Rowland AT, Dunshee LC, Urandur S, Sullivan MO, Kerfeld CA, Keating CD. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308390. [PMID: 38037673 DOI: 10.1002/smll.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.
Collapse
Affiliation(s)
| | - Eric J Young
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew T Rowland
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| | - Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
40
|
Green CM, Sementa D, Mathur D, Melinger JS, Deshpande P, Elbaum-Garfinkle S, Medintz IL, Ulijn RV, Díaz SA. Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors. Commun Chem 2024; 7:49. [PMID: 38424154 PMCID: PMC10904739 DOI: 10.1038/s42004-024-01124-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R9) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joseph S Melinger
- Electronics Sciences and Technology Division Code 6816, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Priyasha Deshpande
- Structural Biology Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Department of Chemistry Hunter College, City University of New York, New York, NY, 10065, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA.
| |
Collapse
|
41
|
Cook AB, Gonzalez BD, van Hest JCM. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Biomacromolecules 2024; 25:425-435. [PMID: 38064593 PMCID: PMC10777345 DOI: 10.1021/acs.biomac.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.
Collapse
Affiliation(s)
- Alexander B Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bruno Delgado Gonzalez
- Departamento
de Química Orgánica, Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Jan C M van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
- Biomedical
Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
42
|
Stano P. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research. Int J Mol Sci 2023; 24:14138. [PMID: 37762444 PMCID: PMC10532297 DOI: 10.3390/ijms241814138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The recent and important advances in bottom-up synthetic biology (SB), in particular in the field of the so-called "synthetic cells" (SCs) (or "artificial cells", or "protocells"), lead us to consider the role of wetware technologies in the "Sciences of Artificial", where they constitute the third pillar, alongside the more well-known pillars hardware (robotics) and software (Artificial Intelligence, AI). In this article, it will be highlighted how wetware approaches can help to model life and cognition from a unique perspective, complementary to robotics and AI. It is suggested that, through SB, it is possible to explore novel forms of bio-inspired technologies and systems, in particular chemical AI. Furthermore, attention is paid to the concept of semantic information and its quantification, following the strategy recently introduced by Kolchinsky and Wolpert. Semantic information, in turn, is linked to the processes of generation of "meaning", interpreted here through the lens of autonomy and cognition in artificial systems, emphasizing its role in chemical ones.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|