1
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025; 17:6308-6328. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Zhang J, Liu G, Li H, Chang R, Jia S, Zhang Y, Huang K, Tang Y, Sun H. Independent Control Over the H/OH Adsorption: Breaking the Trade-Off Between H/OH-Adsorption and H 2O-Dissociation of Platinum-Group Metal Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407881. [PMID: 39328094 DOI: 10.1002/smll.202407881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Platinum-group metals catalysts (such as Rh, Pd, Ir, Pt) have been the most efficient hydrogen evolution reaction (HER) electrocatalysts due to their moderate H adsorption strength, while the high H2O-dissociation barrier in alkaline media restrains the catalytic performance of PGM catalysts. However, the optimization of the H2O-dissociation barrier and *H/*OH binding energy toward their individual optima is limited due to the constraints of their scaling relationship on a single active site. Here, a coordinatively unsaturated "M─Ox─W" (M = Rh, Pd, Ir, Pt) active area is constructed, where H and OH species are anchored on Pt-group metal sites and inactive W sites for individual regulation. By combining experiments and density functional theory calculations, the introduction of extra OH-adsorption sites (coordinatively unsaturated WO3-x) avoids the competitive adsorption of H and OH on the single site, while the enhanced OH-adsorption capacity on the coordinatively unsaturated WO3-x effectively facilitates the adsorption/dissociation of interfacial H2O. As a result, the representative Rh-WO3-x catalyst exhibits outstanding catalytic activity and durability for HER. The findings of this work not only provide valuable insights for the design of efficient PGM catalysts for HER but also shed light on the development of electrocatalysts for other catalytic reactions.
Collapse
Affiliation(s)
- Jiachen Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Guocong Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Huiting Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Ruixuan Chang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Shuyu Jia
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Yechuan Zhang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Lu Y, Pei C, Li Y, Zhao Z, Park HS, Yu X. Boosted Electrochemical Hydrogen Evolution Activity via the Core-Shell Heterostructure of Nickel Sulfide Nanoframe-Supported Layered Rhenium Disulfide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53864-53872. [PMID: 39327722 DOI: 10.1021/acsami.4c11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The strategic design of a heterostructure catalyst with a core-shell nanoarchitecture is imperative for enhancing the efficiency of the electrocatalytic hydrogen evolution reaction (HER). Herein, the core-shell catalyst comprising the rhenium disulfide nanosheets was vertically integrated onto a hollow nickel sulfide (NiS@ReS2) via coprecipitation and hydrothermal treatment. The morphology involves the sulfurization of a nickel-based Prussian blue analogue, effectively mitigating the aggregation of ReS2 nanosheets and maximizing the exposed active sites. By the synergistic effect of morphological design and heterostructure formation, the overpotential of NiS@ReS2 is 136 mV at 10 mA cm-2 in an alkaline electrolyte, and the rapid kinetics is confirmed by the small Tafel slope and low charge transfer resistance during the HER process. Moreover, the electrocatalytic durability of NiS@ReS2 is elucidated, and the boosted catalytic activity of NiS@ReS2 is confirmed by density functional theory. This study unveils a promising method for advancing ReS2-based electrocatalysts with potential implications for producing hydrogen.
Collapse
Affiliation(s)
- Yanhui Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Yong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Zhengqiang Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
4
|
Jin Y, Fan X, Cheng W, Zhou Y, Xiao L, Luo W. The Role of Phosphorus on Alkaline Hydrogen Oxidation Electrocatalysis for Ruthenium Phosphides. Angew Chem Int Ed Engl 2024; 63:e202406888. [PMID: 39007540 DOI: 10.1002/anie.202406888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Transition metal/p-block compounds are regarded as the most essential materials for electrochemical energy converting systems involving various electrocatalysis. Understanding the role of p-block element on the interaction of key intermediates and interfacial water molecule orientation at the polarized catalyst-electrolyte interface during the electrocatalysis is important for rational designing advanced p-block modified metal electrocatalysts. Herein, taking a sequence of ruthenium phosphides (including Ru2P, RuP and RuP2) as model catalysts, we establish a volcanic-relation between P-proportion and alkaline hydrogen oxidation reaction (HOR) activity. The dominant role of P for regulating hydroxyl binding energy is validated by active sites poisoning experiments, pH-dependent infection-point behavior, in situ surface enhanced infrared absorption spectroscopy, and density functional theory calculations, in which P could tailor the d-band structure of Ru, optimize the hydroxyl adsorption sites across the Ru-P moieties, thereby leading to improved proportion of strongly hydrogen-bonded water and facilitated proton-coupled electron transfer process, which are responsible for the enhanced alkaline HOR performance.
Collapse
Affiliation(s)
- Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Xinran Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenjing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yuheng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
5
|
Fu X, Li Q, Li H, Xiao W, Xiao Z, Xu G, Chen D, Wu Z, Wang L. Nitrogen-Doped CoP-Co 2P-Supported Ru with Interconnected Channels through a Microwave Quasi-Solid Approach for Hydrogen Evolution Reaction over a Wide pH Range. Inorg Chem 2024; 63:15477-15484. [PMID: 39105705 DOI: 10.1021/acs.inorgchem.4c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Transition-metal phosphides (TMPs) have attracted extensive attention in energy-related fields, especially for electrocatalytic hydrogen evolution reaction (HER). However, it is imperative to develop a facile and time-consuming approach to prepare metal phosphides with satisfactory catalytic performance. Herein, nitrogen-doped CoP-Co2P decorated with Ru (Ru/N-CoP-Co2P) is synthesized (Ru/N-CoP-Co2P) through a hydrothermal route and following an ultrafast and simple microwave avenue within 20 s. The achieved Ru/N-CoP-Co2P possesses an interconnected porous morphology to expose abundant active sites and accelerate the mass transport. Moreover, N doping and Ru-supported decorated Ru/N-CoP-Co2P also play a key role in promoting the electrocatalytic activity. Therefore, the as-designed Ru/N-CoP-Co2P presents good catalytic performance for the HER in a wide pH range. Ru/N-CoP-Co2P merely needs overpotentials of 63, 100, and 65 mV to obtain 10 mA cm-2 in acidic, alkaline, and seawater electrolytes. This research provides a novel and efficient strategy for the synthesis of TMPs with highly efficient catalytic activity.
Collapse
Affiliation(s)
- Xiaowei Fu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Qichang Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhenyu Xiao
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Dehong Chen
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Zexing Wu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| |
Collapse
|
6
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
7
|
Guo B, Zhao J, Xu Y, Wen X, Ren X, Huang X, Niu S, Dai Y, Gao R, Xu P, Li S. Noble Metal Phosphides Supported on CoNi Metaphosphate for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8939-8948. [PMID: 38334369 DOI: 10.1021/acsami.3c19077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transition metal metaphosphates and noble metal phosphides prepared under similar conditions are potential hybrid catalysts for electrocatalytic water splitting, which is of great significance for H2 production. Herein, the structure and electrocatalytic activity of different noble metal species (i.e., Rh, Pd, Ir) on CoNiP4O12 nanoarrays have been systematically studied. Due to the different formation energies of noble metal phosphides, the phosphides of Rh (RhPx) and Pd (PdPx) as well as the noble metal Ir are obtained under the same phosphorylation conditions perspectively. RhPx/CoNiP4O12 and PdPx/CoNiP4O12 exhibit much better HER activity than Ir/CoNiP4O12 due to the advantages of phosphides. Density functional theory (DFT) calculations reveal that the extraordinary activity of RhPx/CoNiP4O12 originated from the strong affinity to H2O and optimal adsorption for H*. The best RhPx/CoNiP4O12 only requires a low overpotential of 30 and 234 mV to deliver 10 mA cm-2 for HER and OER, respectively, and therefore is effective for overall water splitting (requiring 1.57 V to achieve a current density of 10 mA cm-2). This work not only develops a novel RhPx/CoNiP4O12 electrocatalyst for overall water splitting but also provides deep insight into the formation mechanism of noble metal phosphides.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianying Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoxiao Huang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Siqi Niu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yulong Dai
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruhai Gao
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|