1
|
Li Y, Ren M, Wang J, Ma R, Chen H, Xie Q, Li H, Li J, Wang J. Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Front Pharmacol 2021; 12:606682. [PMID: 34017247 PMCID: PMC8129537 DOI: 10.3389/fphar.2021.606682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Borneol is a terpene and bicyclic organic compound that can be extracted from plants or chemically synthesized. As an important component of proprietary Chinese medicine for the treatment of stroke, its neuroprotective effects have been confirmed in many experiments. Unfortunately, there is no systematic review of these studies. This study aimed to systematically examine the neuroprotective effects of borneol in the cascade reaction of experimental ischemic stroke at different periods. Methods: Articles on animal experiments and cell-based research on the actions of borneol against ischemic stroke in the past 20°years were collected from Google Scholar, Web of Science, PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), and other biomedical databases. Meta-analysis was performed on key indicators in vivo experiments. After sorting the articles, we focused on the neuroprotective effects and mechanism of action of borneol at different stages of cerebral ischemia. Results: Borneol is effective in the prevention and treatment of nerve injury in ischemic stroke. Its mechanisms of action include improvement of cerebral blood flow, inhibition of neuronal excitotoxicity, blocking of Ca2+ overload, and resistance to reactive oxygen species injury in the acute ischemic stage. In the subacute ischemic stage, borneol may antagonize blood-brain barrier injury, intervene in inflammatory reactions, and prevent neuron excessive death. In the late stage, borneol promotes neurogenesis and angiogenesis in the treatment of ischemic stroke. Conclusion: Borneol prevents neuronal injury after cerebral ischemia via multiple action mechanisms, and it can mobilize endogenous nutritional factors to hasten repair and regeneration of brain tissue. Because the neuroprotective effects of borneol are mediated by various therapeutic factors, deficiency caused by a single-target drug is avoided. Besides, borneol promotes other drugs to pass through the blood-brain barrier to exert synergistic therapeutic effects.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ma R, Su P, Jin B, Guo J, Tian M, Mao L, Tang J, Chen T, Lai C, Zeng W, Cui G, Huang L. Molecular cloning and functional identification of a high-efficiency (+)-borneol dehydrogenase from Cinnamomum camphora (L.) Presl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:363-371. [PMID: 33243711 DOI: 10.1016/j.plaphy.2020.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Cinnamomum camphora (L.) Presl, rich in terpenoids, is an important commercial plant. The monoterpenes borneol and camphor are highly desired compounds that have been widely and diversely used in medicine and spices since ancient times. However, the key enzymes in the biosynthetic pathway of borneol and camphor in C. camphora remains unknown, which limits access to these natural products. Here, the chirality of borneol and camphor were identified in C. camphora leaves. Besides the main (+)-borneol and (+)-camphor, C. camphora also contains small amounts of (-)-borneol and (-)-camphor. Then, CcBDH3 - an efficient (+)-borneol dehydrogenase (BDH) - was identified that catalyzed (+)-borneol into (+)-camphor in the presence of NAD+. The Km value was 25.1 μM with a kcat value of 5.4 × 10-3 s-1 at pH 8.5 and 30 °C. CcBDH3, which also yields (-)-camphor from (-)-borneol as a substrate, had a Km value of 36.9 μM with a kcat of 2.1 × 10-3 s-1, and pH of 8.0 and temperature of 32 °C. We further compared the conformational specificity of two other reported BDHs, ZSD1 and ADH2, and found that ZSD1 had the highest conversion rate with (-)-borneol. These findings provide a new way for the production of camphor with various optical activities by metabolic engineering, and the identified camphor biosynthesis pathway provides the foundation for using genetic engineering to improve the production and purity of (+)-borneol in planta.
Collapse
Affiliation(s)
- Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China; Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, United States.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Mei Tian
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Liuying Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Luqi Huang
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| |
Collapse
|
3
|
Li P, Jia G, Xin G, Cai X. The complete chloroplast genome of Cinnamomum camphora (L.) Presl., a unique economic plant to China. Mitochondrial DNA B Resour 2019; 4:2511-2512. [PMID: 33365604 PMCID: PMC7687621 DOI: 10.1080/23802359.2019.1640083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cinnamomum camphora (Lauraceae) Presl. is a unique economic plant to China. The complete chloroplast (cp) genome was sequenced and assembled by using Illumina paired-end reads data. The circular cp genome is 152,729 bp in size, including a pair of inverted repeat (IRs) regions of 20,074 bp, a large single copy (LSC) region of 93,688 bp and a small single copy (SSC) region of 18,893 bp. The genome contains 127 unique genes, including 83 protein-coding genes (PCGs), 36 transfer RNA genes (tRNAs), and 8 ribosomal RNA genes (rRNAs). Besides, 19 genes possess a single intron, while another three genes (ycf3, rps12, and clpP) have a couple of introns. The GC content of entire C. camphora cp genome, LSC, SSC, and IR regions are 39.2, 38.0, 33.9, and 44.4%, respectively. Phylogenetic analysis based on the concatenated coding sequences of cp PCGs showed that C. camphora and Cinnamomum verum are closely related with each other within the genus of cinnamomum.
Collapse
Affiliation(s)
- Peng Li
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Guolun Jia
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Guiliang Xin
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xia Cai
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Yang Z, Guo P, Han R, Wu D, Gao JM, Wu S. Methanol linear gradient counter-current chromatography for the separation of natural products: Sinopodophyllum hexandrum as samples. J Chromatogr A 2019; 1603:251-261. [PMID: 31266644 DOI: 10.1016/j.chroma.2019.06.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023]
Abstract
Counter-current chromatography (CCC) is a unique, liquid-liquid partition chromatography process. Both the mobile and stationary phases are liquids, so no solid support matrix is used. CCC has gained wide acceptance as a preparative technique in a variety of fields. Because the mobile and stationary phases are both liquids, gradient elution is difficult to perform with CCC. Phase equilibrium must be maintained, so any change in the composition of one phase may induce a compositional change in the other. In this work, a new linear gradient elution method was developed for CCC. Biphasic solvent systems containing heptane, ethyl acetate, methanol, and water (HepEMWat) in various ratios were prepared and used to optimize both isocratic and linear gradient CCC separation with methanol. We first separated a test mixture of four standard compounds with partition coefficients ranging from 0.8 to 7.8. The separation resembled a reversed-phase process, and elution was performed while progressively decreasing the polarity of the mobile phase. Target molecules with small partition coefficients eluted first in the lower phase of the optimized HepEMWat solvent system. Elution of constituents with large partition coefficients was quite slow under isocratic conditions. Separation time was significantly reduced when elution was performed with a linear gradient using methanol and the optimal HepEMWat system. Elution with a 3:7:4:6 (v/v/v/v) HepEMWat system took approximately 200 min. This included an 80-min isocratic step, followed by gradient elution with methanol from 0% to 30%. The optimized methanol linear gradient CCC method was then used to separate a complex mixture of natural products isolated from Sinopodophyllum hexandrum (Royle) Ying roots. Twelve compounds with a wide range of polarities were well-resolved in a single separation. We have developed a convenient and cost-effective strategy for the separation of complex mixtures. No tedious mobile phase preparation step is required. The volume of unused mobile phase is minimal, so little solvent is wasted. The method is an important advance for the separation of mixtures that contain many compounds with a large range of polarities and partition coefficients, which are common features of natural products.
Collapse
Affiliation(s)
- Zhi Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling, 712100, Shaanxi, China.
| | - Peipei Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling, 712100, Shaanxi, China
| | - Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling, 712100, Shaanxi, China
| | - Dingfang Wu
- Rui'an Food Inspection and Testing Center, Rui'an, 325204, Zhejiang Province, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling, 712100, Shaanxi, China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Yang Z, Guo P, Han R, Gao JM. Preparative separation of flavone dimers from Dysosma versipellis by counter-current chromatography: Trifluoroacetic acid as a solvent system modifier. J Sep Sci 2018; 41:3631-3643. [PMID: 30040174 DOI: 10.1002/jssc.201800530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/10/2022]
Abstract
The separation of natural products is grueling and time-consuming work with repeated isolations needed to obtain purified compounds. However, using counter-current chromatography, a unique liquid-liquid partition chromatography, constituents can usually be purified efficiently. During the separation of flavone dimers from Dysosma versipellis (Hance) by counter-current chromatography, the separation resolution and sample loading was impeded by the emulsification of the sample. By screening, trifluoroacetic acid was selected as the solvent modifier to eliminate the emulsification. Then, a quaternary solvent system of hexane/ethyl acetate/methanol/water (4:6:5:5 v/v/v/v) with trifluoroacetic acid at a low concentration of 0.5% v/v was used to purify the components from D. versipellis. Compared to that without trifluoroacetic acid, the separation resolution as well as the sample loading both increased greatly. In addition, flavone dimers in low concentrations could be enriched and purified at high sample loading. As a result, five podophyllotoxins and 11 flavonoids were purified and characterized by interpretation of spectroscopic data, in which two of eight flavone dimers were new and a known flavone dimer was first separated from this species.
Collapse
Affiliation(s)
- Zhi Yang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Peipei Guo
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Rui Han
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|