• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5125353)   Today's Articles (12645)
For: Talluri R, Baladandayuthapani V, Mallick BK. Bayesian sparse graphical models and their mixtures. Stat (Int Stat Inst) 2014;3:109-125. [PMID: 24948842 DOI: 10.1002/sta4.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Number Cited by Other Article(s)
1
Cremaschi A, De Iorio M, Kothandaraman N, Yap F, Tint MT, Eriksson J. Joint modeling of association networks and longitudinal biomarkers: An application to childhood obesity. Stat Med 2024;43:1135-1152. [PMID: 38197220 DOI: 10.1002/sim.9994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
2
Niu Y, Ni Y, Pati D, Mallick BK. Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data. J Am Stat Assoc 2023;119:1985-1999. [PMID: 39507103 PMCID: PMC11536292 DOI: 10.1080/01621459.2023.2233744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 11/08/2024]
3
Castelletti F, Consonni G. Bayesian graphical modeling for heterogeneous causal effects. Stat Med 2023;42:15-32. [PMID: 36317356 DOI: 10.1002/sim.9599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/08/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
4
Mulgrave JJ, Ghosal S. Bayesian analysis of nonparanormal graphical models using rank-likelihood. J Stat Plan Inference 2022. [DOI: 10.1016/j.jspi.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
5
Rejoinder to the discussion of “Bayesian graphical models for modern biological applications”. STAT METHOD APPL-GER 2022. [DOI: 10.1007/s10260-022-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Zhang L, Bandyopadhyay D. A graphical model for skewed matrix-variate non-randomly missing data. Biostatistics 2020;21:e80-e97. [PMID: 30371748 DOI: 10.1093/biostatistics/kxy056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA