1
|
Gui H, Ma W, Cao Y, Chao H, Fan M, Dong Q, Li L. Sustained release, antimicrobial, and antioxidant properties of modified porous starch-based biodegradable polylactic acid/polybutylene adipate-co-terephthalate/thermoplastic starch active packaging film. Int J Biol Macromol 2024; 267:131657. [PMID: 38636753 DOI: 10.1016/j.ijbiomac.2024.131657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Porous starch (PS) is a modified starch with commendable biodegradable and adsorption properties. PS exhibits poor thermal stability, and the aqueous solution casting method is conventionally used for PS-activated packaging films. This approach limits the large-scale production of films and makes it difficult to play the functions of porous pores. In this study, PS was prepared by enzymatic digestion combined with freeze-drying and adsorbed with clove essential oil (CEO) after cross-linking with sodium trimetaphosphate. Subsequently, a novel PLA/PBAT/TPS/ScPS-CEO sustained release active packaging film was prepared by blending PLA, PBAT, TPS, and ScPS-CEO using industrial melt extrusion. Compared with PS, ScPS effectively slowed down the release of CEO from the film, with the maximum release of active substances at equilibrium increasing by approximately 100 %, which significantly enhanced the persistence of the antimicrobial and antioxidant properties. The polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch/trimetaphosphate-crosslinked porous starch incorporated with clove essential oil (PLA/PBAT/TPS/ScPS-CEO) film could reduce the proteolysis, lipid oxidation and microbial growth of salmon, extending its shelf life by approximately 100 % at 4 °C. These results indicate that the ScPS can be used in fresh packaging material in practical applications.
Collapse
Affiliation(s)
- Hang Gui
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yichen Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hui Chao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
2
|
Dong X, Bai Y, Ma X, Xue P, Zhang Y, Bian L. Adsorption and Sustained‐Release Capacity of Glyphosate on Microporous Corn Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202000224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoting Dong
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| | - Yifan Bai
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| | - Xian Ma
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| | - Pengli Xue
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| | - Yan Zhang
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| | - Liujiao Bian
- College of Life Science Northwest University Xi'an Shanxi 710069 China
| |
Collapse
|