1
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
2
|
Zhao X, Radford BN, Ungrin M, Dean W, Hemberger M. The Trophoblast Compartment Helps Maintain Embryonic Pluripotency and Delays Differentiation towards Cardiomyocytes. Int J Mol Sci 2023; 24:12423. [PMID: 37569800 PMCID: PMC10418709 DOI: 10.3390/ijms241512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Normal developmental progression relies on close interactions between the embryonic and extraembryonic lineages in the pre- and peri-gastrulation stage conceptus. For example, mouse epiblast-derived FGF and NODAL signals are required to maintain a stem-like state in trophoblast cells of the extraembryonic ectoderm, while visceral endoderm signals are pivotal to pattern the anterior region of the epiblast. These developmental stages also coincide with the specification of the first heart precursors. Here, we established a robust differentiation protocol of mouse embryonic stem cells (ESCs) into cardiomyocyte-containing embryoid bodies that we used to test the impact of trophoblast on this key developmental process. Using trophoblast stem cells (TSCs) to produce trophoblast-conditioned medium (TCM), we show that TCM profoundly slows down the cardiomyocyte differentiation dynamics and specifically delays the emergence of cardiac mesoderm progenitors. TCM also strongly promotes the retention of pluripotency transcription factors, thereby sustaining the stem cell state of ESCs. By applying TCM from various mutant TSCs, we further show that those mutations that cause a trophoblast-mediated effect on early heart development in vivo alter the normal cardiomyocyte differentiation trajectory. Our approaches provide a meaningful deconstruction of the intricate crosstalk between the embryonic and the extraembryonic compartments. They demonstrate that trophoblast helps prolong a pluripotent state in embryonic cells and delays early differentiative processes, likely through production of leukemia inhibitory factor (LIF). These data expand our knowledge of the multifaceted signaling interactions among distinct compartments of the early conceptus that ensure normal embryogenesis, insights that will be of significance for the field of synthetic embryo research.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Bethany N. Radford
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Wendy Dean
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Myriam Hemberger
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Nakadai T, Shimada M, Ito K, Cevher MA, Chu CS, Kumegawa K, Maruyama R, Malik S, Roeder RG. Two target gene activation pathways for orphan ERR nuclear receptors. Cell Res 2023; 33:165-183. [PMID: 36646760 PMCID: PMC9892517 DOI: 10.1038/s41422-022-00774-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Estrogen-related receptors (ERRα/β/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRβ and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRβ/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Murat Alper Cevher
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Mazloom AR, Xu H, Reig-Palou J, Vasileva A, Román AC, Mulero-Navarro S, Lemischka IR, Sevilla A. Esrrb Regulates Specific Feed-Forward Loops to Transit From Pluripotency Into Early Stages of Differentiation. Front Cell Dev Biol 2022; 10:820255. [PMID: 35652095 PMCID: PMC9149258 DOI: 10.3389/fcell.2022.820255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 01/15/2023] Open
Abstract
Characterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb). The data reveals how Esrrb, a key stem cell transcription factor, regulates a specific stem cell miRNA expression program and integrates dynamic changes of feed-forward loops contributing to the early stages of cell differentiation upon its downregulation. Together these findings provide new insights on the architecture of the combined transcriptional post-transcriptional regulatory network in embryonic stem cells.
Collapse
Affiliation(s)
- Amin R. Mazloom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jaume Reig-Palou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ana Vasileva
- Center for Radiological Research, Columbia University, New York, NY, United States
| | - Angel-Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Ihor R. Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- *Correspondence: Ana Sevilla,
| |
Collapse
|
5
|
Sevilla A, Papatsenko D, Mazloom AR, Xu H, Vasileva A, Unwin RD, LeRoy G, Chen EY, Garrett-Bakelman FE, Lee DF, Trinite B, Webb RL, Wang Z, Su J, Gingold J, Melnick A, Garcia BA, Whetton AD, MacArthur BD, Ma'ayan A, Lemischka IR. An Esrrb and Nanog Cell Fate Regulatory Module Controlled by Feed Forward Loop Interactions. Front Cell Dev Biol 2021; 9:630067. [PMID: 33816475 PMCID: PMC8017264 DOI: 10.3389/fcell.2021.630067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
Cell fate decisions during development are governed by multi-factorial regulatory mechanisms including chromatin remodeling, DNA methylation, binding of transcription factors to specific loci, RNA transcription and protein synthesis. However, the mechanisms by which such regulatory “dimensions” coordinate cell fate decisions are currently poorly understood. Here we quantified the multi-dimensional molecular changes that occur in mouse embryonic stem cells (mESCs) upon depletion of Estrogen related receptor beta (Esrrb), a key pluripotency regulator. Comparative analyses of expression changes subsequent to depletion of Esrrb or Nanog, indicated that a system of interlocked feed-forward loops involving both factors, plays a central part in regulating the timing of mESC fate decisions. Taken together, our meta-analyses support a hierarchical model in which pluripotency is maintained by an Oct4-Sox2 regulatory module, while the timing of differentiation is regulated by a Nanog-Esrrb module.
Collapse
Affiliation(s)
- Ana Sevilla
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Departament de Biología Cellular, Fisiología i Immunología, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain
| | - Dimitri Papatsenko
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Amin R Mazloom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana Vasileva
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Richard D Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom.,Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester, United Kingdom.,Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Edward Y Chen
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Dung-Fang Lee
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Trinite
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute, Hospital Universitari Germans Trias I Pujol, Catalonia, Spain
| | - Ryan L Webb
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zichen Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jie Su
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julian Gingold
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Benjamin A Garcia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom.,Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Ben D MacArthur
- The Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat Commun 2019; 10:4065. [PMID: 31492838 PMCID: PMC6731260 DOI: 10.1038/s41467-019-11942-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG. Per-O-acetylated unnatural monosaccharides are popular tools for glycan labeling in live cells but can undergo unwanted side reactions with cysteines. Here, the authors develop unnatural sugars in a partially esterified form that are inert towards cysteines, and use them to probe O-GlcNAcylation in mESCs.
Collapse
|
8
|
Kumar P, Mistri TK. Transcription factors in SOX family: Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 2019; 67:105-113. [PMID: 31288067 DOI: 10.1016/j.semcancer.2019.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.
Collapse
Affiliation(s)
- Prasann Kumar
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tapan Kumar Mistri
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Chemistry, Lovely Professional University, Jalandhar, Punjab, 144411, India.
| |
Collapse
|
9
|
Whitworth DJ, Limnios IJ, Gauthier ME, Weeratunga P, Ovchinnikov DA, Baillie G, Grimmond SM, Graves JAM, Wolvetang EJ. Platypus Induced Pluripotent Stem Cells: The Unique Pluripotency Signature of a Monotreme. Stem Cells Dev 2019; 28:151-164. [PMID: 30417748 DOI: 10.1089/scd.2018.0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The platypus (Ornithorhynchus anatinus) is an egg-laying monotreme mammal whose ancestors diverged ∼166 million years ago from the evolutionary pathway that eventually gave rise to both marsupial and eutherian mammals. Consequently, its genome is an extraordinary amalgam of both ancestral reptilian and derived mammalian features. To gain insight into the evolution of mammalian pluripotency, we have generated induced pluripotent stem cells from the platypus (piPSCs). Deep sequencing of the piPSC transcriptome revealed that piPSCs robustly express the core eutherian pluripotency factors POU5F1/OCT4, SOX2, and NANOG. Given the more extensive role of SOX3 over SOX2 in avian pluripotency, our data indicate that between 315 and 166 million years ago, primitive mammals replaced the role of SOX3 in the vertebrate pluripotency network with SOX2. DAX1/NR0B1 is not expressed in piPSCs and an analysis of the platypus DAX1 promoter revealed the absence of a proximal SOX2-binding DNA motif known to be critical for DAX1 expression in eutherian pluripotent stem cells, suggesting that the acquisition of SOX2 responsiveness by DAX1 has facilitated its recruitment into the pluripotency network of eutherians. Using the RNAseq data, we were also able to demonstrate that in both fibroblasts and piPSCs, the expression ratio of X chromosomes to autosomes (X1-5 X1-5:AA) is approximately equal to 1, indicating that there is no upregulation of X-linked genes. Finally, the RNAseq data also allowed us to explore the process of X-linked gene inactivation in the platypus, where we determined that for any given gene, there is no preference for silencing of the maternal or paternal allele; that is, within a population of cells, the silencing of X-linked genes is not imprinted.
Collapse
Affiliation(s)
- Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland, Gatton, Australia.,2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Ioannis J Limnios
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia.,3 Research School of Biology, Australian National University, Acton, Australia.,4 Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | | | | | - Dmitry A Ovchinnikov
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Gregory Baillie
- 5 Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Sean M Grimmond
- 5 Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | | | - Ernst J Wolvetang
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| |
Collapse
|
10
|
Yesudhas D, Anwar MA, Choi S. Structural mechanism of DNA-mediated Nanog–Sox2 cooperative interaction. RSC Adv 2019; 9:8121-8130. [PMID: 35521171 PMCID: PMC9061787 DOI: 10.1039/c8ra10085c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
The efficiency of stem cell transcriptional regulation always depends on the cooperative association and expression of transcription factors (TFs). Among these, Oct4, Sox2, and Nanog play major roles. Their cooperativity is facilitated via direct protein–protein interactions or DNA-mediated interactions, yet the mechanism is not clear. Most biochemical studies have examined Oct4/Sox2 cooperativity, whereas few studies have evaluated how Nanog competes in the connection between these TFs. In this study, using computational models and molecular dynamics simulations, we built a framework representing the DNA-mediated cooperative interaction between Nanog and Sox2 and analyzed the plausible interaction factors experienced by Nanog because of Sox2, its cooperative binding partner. Comparison of a wild-type and mutant Nanog/Sox2 model with the Nanog crystal structure revealed the regulatory structural mechanism between Nanog/Sox2–DNA-mediated cooperative bindings. Along with the transactivation domains interaction, the DNA-mediated allosteric interactions are also necessary for Nanog cooperative binding. DNA-mediated Nanog–Sox2 cooperativity influences the protein conformational changes and a stronger interaction profile was observed for Nanog-Mut (L103E) in comparison with the Nanog-WT complex. The efficiency of stem cell transcriptional regulation always depends on the cooperative association and expression of transcription factors (TFs).![]()
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology
- Ajou University
- Suwon
- Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology
- Ajou University
- Suwon
- Korea
| |
Collapse
|
11
|
Weeratunga P, Shahsavari A, Ovchinnikov DA, Wolvetang EJ, Whitworth DJ. Induced Pluripotent Stem Cells from a Marsupial, the Tasmanian Devil (Sarcophilus harrisii): Insight into the Evolution of Mammalian Pluripotency. Stem Cells Dev 2018; 27:112-122. [PMID: 29161957 DOI: 10.1089/scd.2017.0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We demonstrate the generation of Tasmanian devil (Sarcophilus harrisii) induced pluripotent stem cells (DeviPSCs) from dermal fibroblasts by lentiviral delivery of human transcription factors. DeviPSCs display characteristic pluripotent stem cell colony morphology, with individual cells having a high nuclear-to-cytoplasmic ratio and alkaline phosphatase activity. DeviPSCs are leukemia inhibitory factor dependent and have reactivated endogenous octamer-binding transcription factor 4 [OCT4, POU domain, class 5, transcription factor 1 (POU5F1)], POU2 [POU domain, class 5, transcription factor 3 (POU5F3)], sex determining region Y-box 2 (SOX2), Nanog homeobox (NANOG) and dosage-sensitive sex reversal, adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) genes, retained a normal karyotype, and concurrently silenced exogenous human transgenes. Notably, co-expression of both OCT4 and POU2 suggests that they are representative of cells of the epiblast, the marsupial equivalent of the inner cell mass. DeviPSCs readily form embryoid bodies and in vitro teratomas containing derivatives of all three embryonic germ layers. To date, DeviPSCs have been stably maintained for more than 45 passages. Our DeviPSCs provide an invaluable resource for studies into marsupial pluripotency and development, and they may also serve as an important tool in efforts to combat the threat of devil facial tumor disease.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- 1 School of Veterinary Science, University of Queensland , Gatton, Australia
| | - Arash Shahsavari
- 1 School of Veterinary Science, University of Queensland , Gatton, Australia
| | - Dmitry A Ovchinnikov
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland , St. Lucia, Australia
| | - Ernst J Wolvetang
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland , St. Lucia, Australia
| | - Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland , Gatton, Australia .,2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland , St. Lucia, Australia
| |
Collapse
|
12
|
Mistri TK, Arindrarto W, Ng WP, Wang C, Lim LH, Sun L, Chambers I, Wohland T, Robson P. Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through Fgf4/ Fgfr2 signaling in preimplantation mouse embryos. Biochem J 2018; 475:1075-1089. [PMID: 29487166 PMCID: PMC5896025 DOI: 10.1042/bcj20170418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst.
Collapse
Affiliation(s)
- Tapan Kumar Mistri
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Chemistry, National University of Singapore, Singapore
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, U.K
| | - Wibowo Arindrarto
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
| | - Wei Ping Ng
- Department of Chemistry, National University of Singapore, Singapore
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
| | - Choayang Wang
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
| | - Leng Hiong Lim
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
| | - Lili Sun
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Paul Robson
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, U.S.A
| |
Collapse
|
13
|
Fu X, He F, Li Y, Shahveranov A, Hutchins AP. Genomic and molecular control of cell type and cell type conversions. CELL REGENERATION 2017; 6:1-7. [PMID: 29348912 PMCID: PMC5769489 DOI: 10.1016/j.cr.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Organisms are made of a limited number of cell types that combine to form higher order tissues and organs. Cell types have traditionally been defined by their morphologies or biological activity, yet the underlying molecular controls of cell type remain unclear. The onset of single cell technologies, and more recently genomics (particularly single cell genomics), has substantially increased the understanding of the concept of cell type, but has also increased the complexity of this understanding. These new technologies have added a new genome wide molecular dimension to the description of cell type, with genome-wide expression and epigenetic data acting as a cell type ‘fingerprint’ to describe the cell state. Using these genomic fingerprints cell types are being increasingly defined based on specific genomic and molecular criteria, without necessarily a distinct biological function. In this review, we will discuss the molecular definitions of cell types and cell type control, and particularly how endogenous and exogenous transcription factors can control cell types and cell type conversions.
Collapse
|
14
|
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett 2017; 592:852-877. [DOI: 10.1002/1873-3468.12826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Nick Owens
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Pablo Navarro
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| |
Collapse
|
15
|
Hutchins AP, Yang Z, Li Y, He F, Fu X, Wang X, Li D, Liu K, He J, Wang Y, Chen J, Esteban MA, Pei D. Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Res 2017; 45:2354-2367. [PMID: 28426095 PMCID: PMC5389706 DOI: 10.1093/nar/gkx054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023] Open
Abstract
The current classification of cells in an organism is largely based on their anatomic and developmental origin. Cells types and tissues are traditionally classified into those that arise from the three embryonic germ layers, the ectoderm, mesoderm and endoderm, but this model does not take into account the organization of cell type-specific patterns of gene expression. Here, we present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues. In an unbiased fashion, this analysis accurately predicts the three known germ layers. Unexpectedly, this analysis also suggests that in total there are eight major domains of cell type-specification, corresponding to the neurectoderm, neural crest, surface ectoderm, endoderm, mesoderm, blood mesoderm, germ cells and the embryonic domain. Further, we identify putative genes responsible for specifying the domain and the cell type. This model has implications for understanding trans-lineage differentiation for stem cells, developmental cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhongzhou Yang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Fangfang He
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiaoshan Wang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongwei Li
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kairong Liu
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China.,Beihang University, Beijing 100191, China
| | - Jiangping He
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yong Wang
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,Laboratory of RNA, Chromatin and Human disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| |
Collapse
|
16
|
Molecular basis for the genome engagement by Sox proteins. Semin Cell Dev Biol 2017; 63:2-12. [DOI: 10.1016/j.semcdb.2016.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/11/2023]
|
17
|
Fiore C, Cohen BA. Interactions between pluripotency factors specify cis-regulation in embryonic stem cells. Genome Res 2016; 26:778-86. [PMID: 27197208 PMCID: PMC4889965 DOI: 10.1101/gr.200733.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/13/2016] [Indexed: 01/06/2023]
Abstract
We investigated how interactions between pluripotency transcription factors (TFs) affect cis-regulation. We created hundreds of synthetic cis-regulatory elements (CREs) comprised of combinations of binding sites for pluripotency TFs and measured their expression in mouse embryonic stem (ES) cells. A thermodynamic model that incorporates interactions between TFs explains a large portion (72%) of the variance in expression of these CREs. These interactions include three favorable heterotypic interactions between TFs. The model also predicts an unfavorable homotypic interaction between TFs, helping to explain the observation that homotypic chains of binding sites express at low levels. We further investigated the expression driven by CREs comprised of homotypic chains of KLF4 binding sites. Our results suggest that KLF homologs make unique contributions to regulation by these CREs. We conclude that a specific set of interactions between pluripotency TFs plays a large role in setting the levels of expression driven by CREs in ES cells.
Collapse
Affiliation(s)
- Chris Fiore
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Barak A Cohen
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Abstract
Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.
Collapse
|
19
|
Murtha M, Strino F, Tokcaer-Keskin Z, Sumru Bayin N, Shalabi D, Xi X, Kluger Y, Dailey L. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells. Stem Cells 2015; 33:378-91. [PMID: 25335464 DOI: 10.1002/stem.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022]
Abstract
Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.
Collapse
Affiliation(s)
- Matthew Murtha
- Department of Microbiology, New York University School of Medicine, New York, New York, USA; Department of Microbiology Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mistri TK, Devasia AG, Chu LT, Ng WP, Halbritter F, Colby D, Martynoga B, Tomlinson SR, Chambers I, Robson P, Wohland T. Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cells. EMBO Rep 2015; 16:1177-91. [PMID: 26265007 PMCID: PMC4576985 DOI: 10.15252/embr.201540467] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.
Collapse
Affiliation(s)
- Tapan Kumar Mistri
- Department of Chemistry, National University of Singapore, Singapore, Singapore Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore, Singapore MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Arun George Devasia
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore, Singapore
| | - Lee Thean Chu
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore, Singapore
| | - Wei Ping Ng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Robson
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore, Singapore The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore, Singapore Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Blij S, Parenti A, Tabatabai-Yazdi N, Ralston A. Cdx2 efficiently induces trophoblast stem-like cells in naïve, but not primed, pluripotent stem cells. Stem Cells Dev 2015; 24:1352-65. [PMID: 25625326 DOI: 10.1089/scd.2014.0395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diverse pluripotent stem cell lines have been derived from the mouse, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), embryonal carcinoma cells (ECCs), and epiblast stem cells (EpiSCs). While all are pluripotent, these cell lines differ in terms of developmental origins, morphology, gene expression, and signaling, indicating that multiple pluripotent states exist. Whether and how the pluripotent state influences the cell line's developmental potential or the competence to respond to differentiation cues could help optimize directed differentiation protocols. To determine whether pluripotent stem cell lines differ in developmental potential, we compared the capacity of mouse ESCs, iPSCs, ECCs, and EpiSCs to form trophoblast. ESCs do not readily differentiate into trophoblast, but overexpression of the trophoblast-expressed transcription factor, CDX2, leads to efficient differentiation to trophoblast and to formation of trophoblast stem cells (TSCs) in the presence of fibroblast growth factor-4 (FGF4) and Heparin. Interestingly, we found that iPSCs and ECCs could both give rise to TSC-like cells following Cdx2 overexpression, suggesting that these cell lines are equivalent in developmental potential. By contrast, EpiSCs did not give rise to TSCs following Cdx2 overexpression, indicating that EpiSCs are no longer competent to respond to CDX2 by differentiating to trophoblast. In addition, we noted that culturing ESCs in conditions that promote naïve pluripotency improved the efficiency with which TSC-like cells could be derived. This work demonstrates that CDX2 efficiently induces trophoblast in more naïve than in primed pluripotent stem cells and that the pluripotent state can influence the developmental potential of stem cell lines.
Collapse
Affiliation(s)
- Stephanie Blij
- 1Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Anthony Parenti
- 2Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Neeloufar Tabatabai-Yazdi
- 1Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Amy Ralston
- 2Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
22
|
Stickels R, Clark K, Heider TN, Mattiske DM, Renfree MB, Pask AJ. DAX1/NR0B1 Was Expressed During Mammalian Gonadal Development and Gametogenesis Before It Was Recruited to the Eutherian X Chromosome1. Biol Reprod 2015; 92:22. [DOI: 10.1095/biolreprod.114.119362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Veillard AC, Marks H, Bernardo AS, Jouneau L, Laloë D, Boulanger L, Kaan A, Brochard V, Tosolini M, Pedersen R, Stunnenberg H, Jouneau A. Stable methylation at promoters distinguishes epiblast stem cells from embryonic stem cells and the in vivo epiblasts. Stem Cells Dev 2014; 23:2014-29. [PMID: 24738887 DOI: 10.1089/scd.2013.0639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic Stem Cells (ESCs) and Epiblast Stem Cells (EpiSCs) are the in vitro representatives of naïve and primed pluripotency, respectively. It is currently unclear how their epigenomes underpin the phenotypic and molecular characteristics of these distinct pluripotent states. Here, we performed a genome-wide comparison of DNA methylation between ESCs and EpiSCs by MethylCap-Seq. We observe that promoters are preferential targets for methylation in EpiSC compared to ESCs, in particular high CpG island promoters. This is in line with upregulation of the de novo methyltransferases Dnmt3a1 and Dnmt3b in EpiSC, and downregulation of the demethylases Tet1 and Tet2. Remarkably, the observed DNA methylation signature is specific to EpiSCs and differs from that of their in vivo counterpart, the postimplantation epiblast. Using a subset of promoters that are differentially methylated, we show that DNA methylation is established within a few days during in vitro outgrowth of the epiblast, and also occurs when ESCs are converted to EpiSCs in vitro. Once established, this methylation is stable, as ES-like cells obtained by in vitro reversion of EpiSCs display an epigenetic memory that only extensive passaging and sub-cloning are able to almost completely erase.
Collapse
|
24
|
Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, Zhang D, Han T, Yang CS, Cunningham TJ, Head SR, Duester G, Dong PDS, Rana TM. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 2014; 53:1005-19. [PMID: 24530304 DOI: 10.1016/j.molcel.2014.01.021] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
Here, we generated a genome-scale shRNA library targeting long intergenic noncoding RNAs (lincRNAs) in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron-Associated lincRNA, or megamind) was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA-RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence- and CNS-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington's disease patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates.
Collapse
Affiliation(s)
- Nianwei Lin
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kung-Yen Chang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhonghan Li
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keith Gates
- Program for Genetic Disease, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zacharia A Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jason Dang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Danhua Zhang
- Program for Genetic Disease, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tianxu Han
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chao-Shun Yang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas J Cunningham
- Program for Development and Aging, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steven R Head
- The Scripps Research Institute, Microarray and NGS Core Facility, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregg Duester
- Program for Development and Aging, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - P Duc Si Dong
- Program for Genetic Disease, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tariq M Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Pediatrics, Rady Children's Hospital San Diego and University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Lee KC, Wong WK, Feng B. Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines 2013; 1:49-78. [PMID: 28548056 PMCID: PMC5423462 DOI: 10.3390/biomedicines1010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022] Open
Abstract
Since the successful isolation of mouse and human embryonic stem cells (ESCs) in the past decades, massive investigations have been conducted to dissect the pluripotency network that governs the ability of these cells to differentiate into all cell types. Beside the core Oct4-Sox2-Nanog circuitry, accumulating regulators, including transcription factors, epigenetic modifiers, microRNA and signaling molecules have also been found to play important roles in preserving pluripotency. Among the various regulations that orchestrate the cellular pluripotency program, transcriptional regulation is situated in the central position and appears to be dominant over other regulatory controls. In this review, we would like to summarize the recent advancements in the accumulating findings of new transcription factors that play a critical role in controlling both pluripotency network and ESC identity.
Collapse
Affiliation(s)
- Kai Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Wing Ki Wong
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
- SBS Core Laboratory, Shenzhen Research Institute, the Chinese University of Hong Kong, 4/F CUHK Shenzhen Research Institute Building, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China.
| |
Collapse
|
26
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
27
|
Diez D, Hutchins AP, Miranda-Saavedra D. Systematic identification of transcriptional regulatory modules from protein-protein interaction networks. Nucleic Acids Res 2013; 42:e6. [PMID: 24137002 PMCID: PMC3874207 DOI: 10.1093/nar/gkt913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factors (TFs) combine with co-factors to form transcriptional regulatory modules (TRMs) that regulate gene expression programs with spatiotemporal specificity. Here we present a novel and generic method (rTRM) for the reconstruction of TRMs that integrates genomic information from TF binding, cell type-specific gene expression and protein–protein interactions. rTRM was applied to reconstruct the TRMs specific for embryonic stem cells (ESC) and hematopoietic stem cells (HSC), neural progenitor cells, trophoblast stem cells and distinct types of terminally differentiated CD4+ T cells. The ESC and HSC TRM predictions were highly precise, yielding 77 and 96 proteins, of which ∼75% have been independently shown to be involved in the regulation of these cell types. Furthermore, rTRM successfully identified a large number of bridging proteins with known roles in ESCs and HSCs, which could not have been identified using genomic approaches alone, as they lack the ability to bind specific DNA sequences. This highlights the advantage of rTRM over other methods that ignore PPI information, as proteins need to interact with other proteins to form complexes and perform specific functions. The prediction and experimental validation of the co-factors that endow master regulatory TFs with the capacity to select specific genomic sites, modulate the local epigenetic profile and integrate multiple signals will provide important mechanistic insights not only into how such TFs operate, but also into abnormal transcriptional states leading to disease.
Collapse
Affiliation(s)
- Diego Diez
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Ave, Guangzhou 510663, China and Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
28
|
Gagliardi A, Mullin NP, Ying Tan Z, Colby D, Kousa AI, Halbritter F, Weiss JT, Felker A, Bezstarosti K, Favaro R, Demmers J, Nicolis SK, Tomlinson SR, Poot RA, Chambers I. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO J 2013; 32:2231-47. [PMID: 23892456 PMCID: PMC3746198 DOI: 10.1038/emboj.2013.161] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal. This paper features a comprehensive proteomic view on the Nanog interactome. Further, it molecularly and functionally defines the intimate interplay of Nanog with another pluripotency determinant Sox2.
Collapse
Affiliation(s)
- Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|