1
|
Li H, Dai H, Shi T, Cheng X, Sun M, Chen K, Wang M, Wei Q. Potentially functional variants in nucleotide excision repair pathway genes predict platinum treatment response of Chinese ovarian cancer patients. Carcinogenesis 2021; 41:1229-1237. [PMID: 32663249 DOI: 10.1093/carcin/bgaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/13/2020] [Accepted: 07/12/2020] [Indexed: 11/13/2022] Open
Abstract
Acquired platinum resistance impedes successful treatment of epithelial ovarian cancer (EOC), and this resistance may be associated with inherited DNA damage-repair response. In the present study, we performed a two-phase analysis to assess associations between 8191 single-nucleotide polymorphisms within 127 genes of nucleotide excision repair pathway from a genome-wide association study dataset and platinum treatment response in 803 Han Chinese EOC patients. As a result, we identified that platinum-based chemotherapeutic response was associated with two potentially functional variants MNAT1 rs2284704 T>C [TC + CC versus TT, adjusted odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.83-0.95 and P = 0.0005] and HUS1B rs61748571 A>G (AG + GG versus AA, OR = 1.10, 95% CI = 1.03-1.18 and P = 0.005). Compared with the prediction model for clinical factors only, models incorporating HUS1B rs61748571 [area under the curve (AUC) 0.652 versus 0.672, P = 0.026] and the number of unfavorable genotypes (AUC 0.652 versus 0.668, P = 0.040) demonstrated a significant increase in the AUC. Further expression quantitative trait loci analysis suggested that MNAT1 rs2284704 T>C significantly influenced mRNA expression levels of MNAT1 (P = 0.003). These results indicated that MNAT1 rs2284704 T>C and HUS1B rs61748571 A>G may serve as potential biomarkers for predicting platinum treatment response of Chinese EOC patients, once validated by further functional studies.
Collapse
Affiliation(s)
- Haoran Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingyan Shi
- Ovarian Cancer Program, Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Fudan University Zhongshan Hospital, Shanghai, China
| | - Xi Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Qiu C, Su W, Shen N, Qi X, Wu X, Wang K, Li L, Guo Z, Tao H, Wang G, Chen B, Xiang H. MNAT1 promotes proliferation and the chemo-resistance of osteosarcoma cell to cisplatin through regulating PI3K/Akt/mTOR pathway. BMC Cancer 2020; 20:1187. [PMID: 33272245 PMCID: PMC7713032 DOI: 10.1186/s12885-020-07687-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, highly expressed in diverse cancers and was involved in cancer molecular pathogenesis. However, its deliverance profile and biological function in osteosarcoma (OS) remain unclear. Methods The expression of MNAT1 in OS was detected by western blot (WB) and immunohistochemistry (IHC). The potential relationship between MNAT1 molecular level expression and OS clinical expectations were analyzed according to tissues microarray (TMA). Proliferation potential of OS cells was evaluated in vitro based on CCK8 and OS cells colony formation assays, while OS cells transwell and in situ tissue source wound healing assays were employed to analyze the OS cells invasion and migration ability in vitro. A nude mouse xenograft model was used to detect tumor growth in vivo. In addition, ordinary bioinformatics analysis and experimental correlation verification were performed to investigate the underlying regulation mechanism of OS by MNAT1. Results In this research, we found and confirmed that MNAT1 was markedly over-expressed in OS tissue derived in situ, also, highly MNAT1 expression was closely associated with bad clinical expectations. Functional studies had shown that MNAT1 silencing could weaken the invasion, migration and proliferation of OS cells in vitro, and inhibit OS tumor growth in vivo. Mechanism study indicated that MNAT1 contributed to the progression of OS via the PI3K/Akt/mTOR pathway. We further verified that the MNAT1 was required in the regulation of OS chemo-sensitivity to cisplatin (DDP). Conclusions Taken together, the data of the present study demonstrate a novel molecular mechanism of MNAT1 involved in the formation of DDP resistance of OS cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07687-3.
Collapse
Affiliation(s)
- Chensheng Qiu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.,Department of Orthopedic Surgery, Qingdao Municipal Hospital (Group), Qingdao, 266011, China
| | - Weiliang Su
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Nana Shen
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoying Qi
- Department of Gynaecology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaolin Wu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kai Wang
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lin Li
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhu Guo
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hao Tao
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Guanrong Wang
- Department of Operation Room, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Bohua Chen
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Hongfei Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
4
|
Zhou S, Lu J, Li Y, Chen C, Cai Y, Tan G, Peng Z, Zhang Z, Dong Z, Kang T, Tang F. MNAT1 is overexpressed in colorectal cancer and mediates p53 ubiquitin-degradation to promote colorectal cancer malignance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:284. [PMID: 30477538 PMCID: PMC6258412 DOI: 10.1186/s13046-018-0956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, high expresses in various cancers and is involved in cancer pathogenesis. However, mechanisms underlying its regulation in carcinogenesis are unclear. METHODS The tissue microarray of colorectal cancer (CRC) was used to evaluate MNAT1 expressions in CRC tissues using immunohistochemistry, CRC cell lines were also detected MNAT1 expression using Western-blotting. MNAT1 and shMNAT1 vectors were constructed, and transfected into CRC cells. Cell growths of the transfected cells were observed using MTT and colony formation. The affects of MNAT1 on p53 expression were analyzed using Western-blotting and Real-time PCR. Immunoprecipitation assay was used to analyze the interaction p53 and MNAT1, and Western-blotting was used to test the effects of MNAT1 on p53 downstream molecules. The apoptosis of CRC cells with MNAT1 or shMNAT1 were analyzed using flow cytometry. BABL/c athymic nude mice were used to observe the effect of MNAT1 on CRC cell growth in vivo. RESULTS MNAT1 was found to be overexpressed in CRC tissues and cells, and MNAT1 expressions in CRC tissue samples were associated with CRC carcinogenesis and poor patient outcomes. MNAT1-knockin increased CRC cell growth and colony formation, and MNAT1-knockdown dramatically decreased cell motility and invasion. MNAT1 physically interacted with p53, MNAT1 also increased the interaction of MDM2 with p53. Strikingly, MNAT1 mediated p53 ubiquitin-degradation. MNAT1 shortened p53 half-life, and ectopic MNAT1 expression decreased p53 protein stability. Moreover, MNAT1 induced RAD51 and reduced p21, cleaved-caspase3, cleaved-PARP and BAX expression. MNAT1 inhibited CRC cell apoptosis. shMANT1 decreased tumor growths in nude mice following p53 increase. CONCLUSION MNAT1 binds to p53, mediates p53 ubiquitin-degradation through MDM2, increases cell growth and decreases cell apoptosis, and finally promotes CRC malignance. MNAT1 binding to p53 and mediating p53 ubiquitin-degradation axis represents a novel molecular joint in the p53 pathway.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.,Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Jinping Lu
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Chan Chen
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yongqiang Cai
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zhengke Peng
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Xu H, Bai X, Yu S, Liu Q, Pestell RG, Wu K. MAT1 correlates with molecular subtypes and predicts poor survival in breast cancer. Chin J Cancer Res 2018; 30:351-363. [PMID: 30046229 DOI: 10.21147/j.issn.1000-9604.2018.03.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective Menage a trois 1 (MAT1) is a targeting subunit of cyclin-dependent kinase-activating kinase and general transcription factor IIH kinase, which modulates cell cycle, transcription and DNA repair. Its dysregulation is responsible for diseases including cancers. To further explore the role of MAT1 in breast cancer, we investigated the pathways in which MAT1 might be involved, the association between MAT1 and molecular subtypes, and the role of MAT1 in clinical outcomes of breast cancer patients. Methods We conducted immunohistochemistry staining on tissue microarray and immunofluorescence staining on sections of MAT1 stable breast cancer cells. Also, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis, correlation analysis and prognosis analysis on public databases. Results MAT1 was involved in multiple pathways including normal physiology signaling and disease-related signaling. Furthermore, MAT1 positively correlated with the protein status of estrogen receptor and progesterone receptor, and was enriched in luminal-type and human epidermal growth factor receptor 2-enriched breast cancer in comparison with basal-like subtype at both mRNA and protein levels. Correlation analysis revealed significant association between MAT1 mRNA amount and epithelial markers, mesenchymal markers, cancer stem cell markers, apoptosis markers, transcription markers and oncogenes. Consistently, the results of immunofluorescence stain indicated that MAT1 overexpression enhanced the protein abundance of epidermal growth factor receptor, vimentin, sex determining region Y-box 2 and sine oculis homeobox homolog 1. Importantly, Kaplan-Meier Plotter analysis reflected that MAT1 could serve as a prognostic biomarker predicting worse relapse-free survival and metastasis-free survival. Conclusions MAT1 is correlated with molecular subtypes and is associated with unfavorable prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianguang Bai
- Medical School of Pingdingshan University, Pingdingshan 467000, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Richard G Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA 19096, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Zhou QY, Tu CY, Shao CX, Wang WK, Zhu JD, Cai Y, Mao JY, Chen W. GC7 blocks epithelial-mesenchymal transition and reverses hypoxia-induced chemotherapy resistance in hepatocellular carcinoma cells. Am J Transl Res 2017; 9:2608-2617. [PMID: 28560008 PMCID: PMC5446540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia is common in solid tumors and results in the activation of hypoxia-response genes. Hypoxia-inducible factor-1α (HIF-1α) is thought to reflect major cellular adaptation to hypoxia and contributes to chemoresistance in various tumors including hepatocellular carcinoma (HCC). N1-guanyl-1,7-diaminoheptane (GC7) is an inhibitor which suppresses the active eukaryotic translation initiation factor 5A-2 (eIF5A2), preventing epithelial-mesenchymal transition (EMT) in chemoresistance. In this study, we investigated the role of GC7 in the therapeutic effect of doxorubicin in hypoxia in HCC. We utilized four types of HCC cell line (Huh7, Hep3B, SNU387 and SNU449) in this study. Western blot and immunofluorescence were used to detect expression of epithelial/mesenchymal markers for EMT evaluation and HIF-1α was knocked down using HIF-1α-siRNA. Hypoxia-induced EMT contributed to doxorubicin chemoresistance in HCC cells. Low concentrations of GC7 sensitized Huh7 and Hep3B to doxorubicin by reversing EMT. Knockdown of HIF-1α attenuated hypoxia-induced EMT and abolished the unique feature of GC7. GC7 enhanced sensitivity to doxorubicin in HCC by reversing hypoxia-induced EMT via the HIF-1α-mediated signaling pathway. We suggest a new method of enhancing cytotoxicity of chemotherapy and improving the long-term survival rate in HCC.
Collapse
Affiliation(s)
- Qing-Yun Zhou
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang UniversityLishui 323000, Zhejiang, China
| | - Chao-Yong Tu
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang UniversityLishui 323000, Zhejiang, China
| | - Chu-Xiao Shao
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang UniversityLishui 323000, Zhejiang, China
| | - Wu-Ke Wang
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang UniversityLishui 323000, Zhejiang, China
| | - Jing-De Zhu
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang UniversityLishui 323000, Zhejiang, China
| | - Ying Cai
- Meizhong Disease Gene Research Institute Company LimitedHangzhou, Zhejiang, China
| | - Jia-Yan Mao
- Meizhong Disease Gene Research Institute Company LimitedHangzhou, Zhejiang, China
| | - Wei Chen
- Institute of Molecular Engineering, University of ChicagoChicago 60637, IL, USA
| |
Collapse
|
7
|
Li L, Qi X, Sun W, Abdel-Azim H, Lou S, Zhu H, Prasadarao NV, Zhou A, Shimada H, Shudo K, Kim YM, Khazal S, He Q, Warburton D, Wu L. Am80-GCSF synergizes myeloid expansion and differentiation to generate functional neutrophils that reduce neutropenia-associated infection and mortality. EMBO Mol Med 2016; 8:1340-1359. [PMID: 27737899 PMCID: PMC5090663 DOI: 10.15252/emmm.201606434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neutrophils generated by granulocyte colony‐stimulating factor (GCSF) are functionally immature and, consequently, cannot effectively reduce infection and infection‐related mortality in cancer chemotherapy‐induced neutropenia (CCIN). Am80, a retinoic acid (RA) agonist that enhances granulocytic differentiation by selectively activating transcription factor RA receptor alpha (RARα), alternatively promotes RA‐target gene expression. We found that in normal and malignant primary human hematopoietic specimens, Am80‐GCSF combination coordinated proliferation with differentiation to develop complement receptor‐3 (CR3)‐dependent neutrophil innate immunity, through altering transcription of RA‐target genes RARβ2,C/EBPε, CD66,CD11b, and CD18. This led to generation of functional neutrophils capable of fighting infection, whereas neutralizing neutrophil innate immunity with anti‐CD18 antibody abolished neutrophil bactericidal activities induced by Am80‐GCSF. Further, Am80‐GCSF synergy was evaluated using six different dose‐schedule‐infection mouse CCIN models. The data demonstrated that during “emergency” granulopoiesis in CCIN mice undergoing transient systemic intravenous bacterial infection, Am80 effect on differentiating granulocytic precursors synergized with GCSF‐dependent myeloid expansion, resulting in large amounts of functional neutrophils that reduced infection. Importantly, extensive survival tests covering a full cycle of mouse CCIN with perpetual systemic intravenous bacterial infection proved that without causing myeloid overexpansion, Am80‐GCSF generated sufficient numbers of functional neutrophils that significantly reduced infection‐related mortality in CCIN mice. These findings reveal a differential mechanism for generating functional neutrophils to reduce CCIN‐associated infection and mortality, providing a rationale for future therapeutic approaches.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotian Qi
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Siyue Lou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hong Zhu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Nemani V Prasadarao
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.,Division of Infectious Diseases, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Alice Zhou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Koichi Shudo
- Japan Pharmaceutical Information Center, Shibuya-ku, Tokyo, Japan
| | - Yong-Mi Kim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Sajad Khazal
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Lingtao Wu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA .,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Vanhoutreve R, Kress A, Legrand B, Gass H, Poch O, Thompson JD. LEON-BIS: multiple alignment evaluation of sequence neighbours using a Bayesian inference system. BMC Bioinformatics 2016; 17:271. [PMID: 27387560 PMCID: PMC4936259 DOI: 10.1186/s12859-016-1146-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Background A standard procedure in many areas of bioinformatics is to use a multiple sequence alignment (MSA) as the basis for various types of homology-based inference. Applications include 3D structure modelling, protein functional annotation, prediction of molecular interactions, etc. These applications, however sophisticated, are generally highly sensitive to the alignment used, and neglecting non-homologous or uncertain regions in the alignment can lead to significant bias in the subsequent inferences. Results Here, we present a new method, LEON-BIS, which uses a robust Bayesian framework to estimate the homologous relations between sequences in a protein multiple alignment. Sequences are clustered into sub-families and relations are predicted at different levels, including ‘core blocks’, ‘regions’ and full-length proteins. The accuracy and reliability of the predictions are demonstrated in large-scale comparisons using well annotated alignment databases, where the homologous sequence segments are detected with very high sensitivity and specificity. Conclusions LEON-BIS uses robust Bayesian statistics to distinguish the portions of multiple sequence alignments that are conserved either across the whole family or within subfamilies. LEON-BIS should thus be useful for automatic, high-throughput genome annotations, 2D/3D structure predictions, protein-protein interaction predictions etc.
Collapse
Affiliation(s)
- Renaud Vanhoutreve
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France
| | - Arnaud Kress
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France
| | - Baptiste Legrand
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France
| | - Hélène Gass
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France
| | - Olivier Poch
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France
| | - Julie D Thompson
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle de Strasbourg, Strasbourg, France.
| |
Collapse
|
9
|
Shao X, Liu Y, Li Y, Xian M, Zhou Q, Yang B, Ying M, He Q. The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis. Sci Rep 2016; 6:24589. [PMID: 27074819 PMCID: PMC4830980 DOI: 10.1038/srep24589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply this therapy to other types of acute myeloid leukemia (AML). However, AML, with the exception of APL, fails to respond to differentiation therapy. Therefore, research strategies to further sensitize cells to retinoids and to extend the range of AMLs that respond to retinoids beyond APLs are urgently needed. In this study, we showed that TAK165, a HER2 inhibitor, exhibited a strong synergy with ATRA to promote AML cell differentiation. We observed that TAK165 sensitized the AML cells to ATRA-induced cell growth inhibition, G0/G1 phase arrest, CD11b expression, mature morphologic changes, NBT reduction and myeloid regulator expression. Unexpectedly, HER2 pathway might not be essential for TAK165-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of the RARα/STAT1 axis. Furthermore, the MEK/ERK cascade regulated the activation of STAT1. Taken together, our study is the first to evaluate the synergy of TAK165 and ATRA in AML cell differentiation and to assess new opportunities for the combination of TAK165 and ATRA as a promising approach for future differentiation therapy.
Collapse
Affiliation(s)
- Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yujia Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangling Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Dai XY, Zhuang LH, Wang DD, Zhou TY, Chang LL, Gai RH, Zhu DF, Yang B, Zhu H, He QJ. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget 2016; 7:6933-47. [PMID: 26771844 PMCID: PMC4872759 DOI: 10.18632/oncotarget.6903] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023] Open
Abstract
Although hypoxia is a prominent feature contributing to the therapeutic resistance of hepatocellular carcinoma cells (HCC) against chemotherapeutic agents, including the Topoisomerase I inhibitor SN38, the underlying mechanism is not fully understood and its understanding remains a major clinical challenge. In the present study, we found that hypoxia-induced nuclear translocation and accumulation of YAP acted as a survival input to promote resistance to SN38 in HCC. The induction of YAP by hypoxia was not mediated by HIF-1α because manipulating the abundance of HIF-1α with CoCl2, exogenous expression, and RNA interference had no effect on the phosphorylation or total levels of YAP. The mevalonate-HMG-CoA reductase (HMGCR) pathway may modulate the YAP activation under hypoxia. Combined YAP inhibition using either siRNA or the HMGCR inhibitor statins together with SN38 treatment produced improved anti-cancer effects in HCC cells. The increased anti-cancer effect of the combined treatment with statins and irinotecan (the prodrug of SN-38) was further validated in a human HepG2 xenograft model of HCC in nude mice. Taken together, our findings identify YAP as a novel mediator of hypoxic-resistance to SN38. These results suggest that the administration of SN28 together with the suppression of YAP using statins is a promising strategy for enhancing the treatment response in HCC patients, particularly in advanced stage HCC cases presenting hypoxic resistance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Blotting, Western
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Nucleus/metabolism
- Cell Proliferation
- Drug Resistance, Neoplasm
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia/complications
- Hypoxia/physiopathology
- Immunoenzyme Techniques
- Irinotecan
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Transport
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Xiao-Yang Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Lin-Han Zhuang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tian-Yi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin-Lin Chang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ren-Hua Gai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Di-Feng Zhu
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Fejzo MS, Anderson L, Chen HW, Anghel A, Zhuo J, Anchoori R, Roden R, Slamon DJ. ADRM1-amplified metastasis gene in gastric cancer. Genes Chromosomes Cancer 2015; 54:506-515. [PMID: 26052681 DOI: 10.1002/gcc.22262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022] Open
Abstract
The proteasome ubiquitin receptor ADRM1 has been shown to be a driver for 20q13.3 amplification in epithelial cancers including ovarian and colon cancer. We performed array-CGH on 16 gastric cancer cell lines and found 20q13.3 to be amplified in 19% with the minimal amplified region in gastric cancer cell line AGS spanning a 1 Mb region including ADRM1. Expression microarray analysis shows overexpression of only two genes in the minimal region, ADRM1 and OSBPL2. While RNAi knockdown of both ADRM1 and OSBPL2 led to a slight reduction in growth, only ADRM1 RNAi knockdown led to a significant reduction in migration and growth in soft-agar. Treatment of AGS cells with the ADRM1 inhibitor RA190 resulted in proteasome inhibition, but RNAi knockdown of ADRM1 did not. However, RNAi knockdown of ADRM1 led to a significant reduction in specific proteins including MNAT1, HRS, and EGFR. We hypothesize that ADRM1 may act in ADRM1-amplified gastric cancer to alter protein levels of specific oncogenes resulting in an increase in metastatic potential. Selective inhibition of ADRM1 independent of proteasome inhibition may result in a targeted therapy for ADRM1-amplified gastric cancer. In vivo models are now warranted to validate these findings. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlena S Fejzo
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Lee Anderson
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Hsiao-Wang Chen
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Adrian Anghel
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Jiaying Zhuo
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| | - Ravi Anchoori
- Department of Oncology, the Johns Hopkins University, Baltimore, MD, 21231
| | - Richard Roden
- Department of Oncology, the Johns Hopkins University, Baltimore, MD, 21231.,Department of Pathology, the Johns Hopkins University, Baltimore, MD, 21231.,Department of Gynecology and Obstetrics, the Johns Hopkins University, Baltimore, MD, 21231
| | - Dennis J Slamon
- Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
12
|
Zhu H, Luo P, Fu Y, Wang J, Dai J, Shao J, Yang X, Chang L, Weng Q, Yang B, He Q. Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin. Oncotarget 2015; 6:3254-67. [PMID: 25226612 PMCID: PMC4413651 DOI: 10.18632/oncotarget.2410] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023] Open
Abstract
Adriamycin, a widely used anthracycline antibiotic in multiple chemotherapy regimens, has been challenged by the cardiotoxicity leading to fatal congestive heart failure in the worst condition. The present study demonstrated that Dihydromyricetin, a natural product extracted from ampelopsis grossedentat, exerted cardioprotective effect against the injury in Adriamycin-administrated ICR mice. Dihydromyricetin decreased ALT, LDH and CKMB levels in mice serum, causing a significant reduction in the toxic death triggered by Adriamycin. The protective effects were also indicated by the alleviation of abnormal electrocardiographic changes, the abrogation of proliferation arrest and apoptotic cell death in primary myocardial cells. Further study revealed that Dihydromyricetin-rescued loss of anti-apoptosis protein ARC provoked by Adriamycin was involved in the cardioprotection. Intriguingly, the anticancer activity of Adriamycin was not compromised upon the combination with Dihydromyricetin, as demonstrated by the enhanced anticancer effect achieved by Adriamycin plus Dihydromyricetin in human leukemia U937 cells and xenograft models, in a p53-dependent manner. These results collectively promised the potential value of Dihydromyricetin as a rational cardioprotective agent of Adriamycin, by protecting myocardial cells from apoptosis, while potentiating anticancer activities of Adriamycin, thus further increasing the therapeutic window of the latter one.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cytoprotection
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Doxorubicin/toxicity
- Flavonols/pharmacology
- HL-60 Cells
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Heart Diseases/prevention & control
- Humans
- K562 Cells
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/metabolism
- Oxidative Stress/drug effects
- Protective Agents/pharmacology
- Proto-Oncogene Proteins c-mdm2/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Suppressor Protein p53/metabolism
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Fu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiabin Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linlin Chang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|