1
|
Ohno Y, Taura D, Okamoto K, Fujita H, Honda-Kohmo K, Matsuo K, Sone M. Nicotine reduces ROS and enhances cell proliferation via the α4 nicotinic acetylcholine receptor subunit in human induced pluripotent stem cells. Stem Cells Dev 2023; 32:237-245. [PMID: 36860198 DOI: 10.1089/scd.2022.0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The effects of smoking on fetal development and stem cell differentiation are not fully understood. Although nicotinic acetylcholine receptors (nAChRs) are expressed in many organs of the human body, their significance in human induced pluripotent stem cells (hiPSCs) remains unclear. After expression levels of nAChR subunits in hiPSCs were determined, the effects of the nAChR agonist, nicotine, on undifferentiated hiPSCs were evaluated using a Clariom S Array. We also determined the effect of nicotine alone and with a nAChR subunit antagonist on hiPSC cells. NAChR α4, α7, and β4 subunits were strongly expressed in hiPSCs. cDNA microarray, gene ontology, and enrichment analyses showed that exposing hiPSCs to nicotine altered expression of genes associated with immune responses, neurological system, carcinogenesis, cell differentiation, and cell proliferation. Particularly affected was metallothionein, which acts to decrease reactive oxygen species (ROS). The nicotine-induced reduction of ROS in hiPSCs was canceled by an α4 subunit or nonselective nAChR antagonist. HiPSC proliferation was increased by nicotine, and this effect, too, was canceled by an α4 antagonist. In conclusion, nicotine reduces ROS and enhances cell proliferation via the α4 nAChR subunit in hiPSCs. These findings provide new insight into the significance of nAChRs on human stem cells and fertilized human ova.
Collapse
Affiliation(s)
- Youichi Ohno
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Daisuke Taura
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Kentaro Okamoto
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Haruka Fujita
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Kyoto, Japan;
| | - Kyoko Honda-Kohmo
- National Cerebral and Cardiovascular Center, 13875, Division of Preventive Healthcare, Suita, Osaka, Japan;
| | - Koji Matsuo
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Masakatsu Sone
- St Marianna University School of Medicine, 12927, Division of Metabolism and Endocrinology, Department of Internal Medicine, Kawasaki, Kanagawa, Japan;
| |
Collapse
|
2
|
Hossain ME, Cevallos RR, Zhang R, Hu K. Attenuating iPSC reprogramming stress with dominant-negative BET peptides. iScience 2023; 26:105889. [PMID: 36691621 PMCID: PMC9860338 DOI: 10.1016/j.isci.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) is inefficient and stochastic. The underlying causes for these deficiencies are elusive. Here, we showed that the reprogramming factors (OCT4, SOX2, and KLF4, collectively OSK) elicit dramatic reprogramming stress even without the pro-oncogene MYC including massive transcriptional turbulence, massive and random deregulation of stress-response genes, cell cycle impairment, downregulation of mitotic genes, illegitimate reprogramming, and cytotoxicity. The conserved dominant-negative (DN) peptides of the three ubiquitous human bromodomain and extraterminal (BET) proteins enhanced iPSC reprogramming and mitigated all the reprogramming stresses mentioned above. The concept of reprogramming stress developed here affords an alternative avenue to understanding and improving iPSC reprogramming. These DN BET fragments target a similar set of the genes as the BET chemical inhibitors do, indicating a distinct approach to targeting BET proteins.
Collapse
Affiliation(s)
- Md Emon Hossain
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ricardo Raul Cevallos
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruowen Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kejin Hu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|
5
|
Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells. Cell Div 2020; 15:12. [PMID: 33292330 PMCID: PMC7641821 DOI: 10.1186/s13008-020-00068-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) has opened new therapeutic possibilities. However, karyotypic abnormalities detected in iPSCs compromised their utility, especially chromosomal aberrations found at early passages raised serious safety concerns. The mechanism underlying the chromosomal abnormality in early-passage iPSCs is not known. Methods Human dermal fibroblasts (HDFs) were stimulated with KMOS (KLF4, cMYC, OCT4 and SOX2) proteins to enhance their proliferative capacity and many vigorous clones were obtained. Clonal reprogramming was carried out by KMOS mRNAs transfection to confirm the ‘chromosomal mutagenicity’ of reprogramming process. Subculturing was performed to examine karyotypic stability of iPSCs after the re-establishment of stemness. And antioxidant N-acetyl-cysteine (NAC) was added to the culture medium for further confirmming the mutagenicity in the first few days of reprogramming. Results Chromosomal aberrations were found in a small percentage of newly induced iPS clones by reprogramming transcription factors. Clonal reprogramming ruled out the aberrant chromosomes inherited from rare karyotypically abnormal parental cell subpopulation. More importantly, the antioxidant NAC effectively reduced the occurrence of chromosomal aberrations at the early stage of reprogramming. Once iPS cell lines were established, they restored karyotypic stability in subsequent subculturing. Conclusions Our results provided the first line of evidence for the ‘chromosomal mutagenicity’ of reprogramming process.
Collapse
|
6
|
Pharmacological Regulation of Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4081890. [PMID: 30363995 PMCID: PMC6186346 DOI: 10.1155/2018/4081890] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. The regulation of stem cell self-renewal and differentiation is crucial for early development and tissue homeostasis. Recent reports have suggested that the balance between self-renewal and differentiation is regulated by the cellular oxidation-reduction (redox) state; therefore, the study of ROS regulation in regenerative medicine has emerged to develop protocols for regulating appropriate stem cell differentiation and maintenance for clinical applications. In this review, we introduce the defined roles of oxidative stress in pluripotent stem cells (PSCs) and hematopoietic stem cells (HSCs) and discuss the potential applications of pharmacological approaches for regulating oxidative stress in regenerative medicine.
Collapse
|
7
|
Assou S, Bouckenheimer J, De Vos J. Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics? Stem Cells 2018; 36:814-821. [PMID: 29441649 DOI: 10.1002/stem.2797] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have the potential to differentiate virtually into any cell type in unlimited quantities. Therefore, they are ideal for in vitro tissue modeling or to produce cells for clinical use. Importantly, and differently from immortalized and cancer cell lines, the hiPSC genome scrupulously reproduces that of the cell from which they were derived. However, hiPSCs can develop genetic abnormalities during reprogramming or prolonged cell culture, such as aneuploidies or oncogenic mutations (e.g., in TP53). Therefore, hiPSC genome integrity must be routinely monitored because serious genome alterations would greatly compromise their usefulness or safety of use. Here, we reviewed hiPSC genome quality control monitoring methods and laboratory practice. Indeed, due to their frequency and functional consequences, recurrent genetic defects found in cultured hiPSCs are inacceptable and their appearance should be monitored by routine screening. Hence, for research purposes, we propose that the genome of hiPSC lines should be systematically screened at derivation, at least by karyotyping, and then regularly (every 12 weeks) during experiments, for instance with polymerase chain reaction-based techniques. For some specific applications, such as research on aging, cell cycle, apoptosis or cancer, other tests (e.g., TP53 mutation detection) should also be included. For clinical use, in addition to karyotyping, we advise exome sequencing. Stem Cells 2018;36:814-821.
Collapse
Affiliation(s)
- Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.,CHU Montpellier, Department of Cell and Tissue Engineering, Hospital Saint-Eloi, Montpellier, France
| |
Collapse
|
8
|
Martin U. Genome stability of programmed stem cell products. Adv Drug Deliv Rev 2017; 120:108-117. [PMID: 28917518 DOI: 10.1016/j.addr.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023]
Abstract
Inherited and acquired genomic abnormalities are known to cause genetic diseases and contribute to cancer formation. Recent studies demonstrated a substantial mutational load in mouse and human embryonic and induced pluripotent stem cells (ESCs and iPSCs). Single nucleotide variants, copy number variations, and larger chromosomal abnormalities may influence the differentiation capacity of pluripotent stem cells and the functionality of their derivatives in disease modeling and drug screening, and are considered a serious risk for cellular therapies based on ESC or iPSC derivatives. This review discusses the types and origins of different genetic abnormalities in pluripotent stem cells, methods for their detection, and the mechanisms of development and enrichment during reprogramming and culture expansion.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, German Center for Lung Research, Hannover Medical School, Germany.
| |
Collapse
|
9
|
Eid W, Abdel-Rehim W. Vitamin C promotes pluripotency of human induced pluripotent stem cells via the histone demethylase JARID1A. Biol Chem 2016; 397:1205-1213. [DOI: 10.1515/hsz-2016-0181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023]
Abstract
Abstract
Somatic cells can be reprogramed into induced pluripotent stem (iPS) cells by defined factors, which provide a powerful basis for personalized stem-cell based therapies. However, cellular reprograming is an inefficient and metabolically demanding process commonly associated with obstacles that hamper further use of this technology. Spontaneous differentiation of iPS cells cultures represents a significant hurdle that hinder obtaining high quality iPS cells for further downstream experimentation. In this study, we found that a natural compound, vitamin C, augmented pluripotency in iPS cells and reduced unwanted spontaneous differentiation during iPS cells maintenance. Gene expression analysis showed that vitamin C increased the expression of the histone demethylase JARID1A. Furthermore, through gain- and loss-of-function approaches, we show that JARID1A is a key effector in promoting pluripotency and reducing differentiation downstream of vitamin C. Our results therefore highlight a straightforward method for improving the pluripotency and quality of iPS cells; it also shows a possible role for H3K4me2/3 in cell fate determination and establishes a link between vitamin C and epigenetic regulation.
Collapse
|
10
|
Lu J, Li H, Baccei A, Sasaki T, Gilbert DM, Lerou PH. Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells. Stem Cells Dev 2016; 25:740-7. [PMID: 26935587 DOI: 10.1089/scd.2015.0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM-deficient iPSCs relative to wild-type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral (RV) reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DDR reveals unique vulnerability of early replicating open chromatin to RV vectors.
Collapse
Affiliation(s)
- Junjie Lu
- 1 Department of Pediatric Newborn Medicine and Division of Genetics, Department of Medicine, Brigham and Women's Hospital , Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Hu Li
- 2 Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine , Mayo Clinic, Rochester, Minnesota
| | - Anna Baccei
- 1 Department of Pediatric Newborn Medicine and Division of Genetics, Department of Medicine, Brigham and Women's Hospital , Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Takayo Sasaki
- 3 Department of Biological Sciences, Florida State University , Tallahassee, Florida
| | - David M Gilbert
- 3 Department of Biological Sciences, Florida State University , Tallahassee, Florida
| | - Paul H Lerou
- 1 Department of Pediatric Newborn Medicine and Division of Genetics, Department of Medicine, Brigham and Women's Hospital , Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts.,4 Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
11
|
Gascón S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP, Schroeder T, Beckers J, Irmler M, Berndt C, Angeli JPF, Conrad M, Berninger B, Götz M. Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell 2015; 18:396-409. [PMID: 26748418 DOI: 10.1016/j.stem.2015.12.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/07/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.
Collapse
Affiliation(s)
- Sergio Gascón
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
| | - Elisa Murenu
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Giacomo Masserdotti
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felipe Ortega
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University, Avenue Puerta de Hierro, 28040 Madrid, Spain
| | - Gianluca L Russo
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - David Petrik
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Aditi Deshpande
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Christophe Heinrich
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Marisa Karow
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, 9016 Dunedin, New Zealand
| | - Timm Schroeder
- Research Unit Stem Cell Dynamics, Helmholtz Center Munich, Neuherberg, 85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Center Munich GmbH, 85764 Neuherberg, Germany; Center of Life and Food Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich GmbH, 85764 Neuherberg, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Benedikt Berninger
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany; Excellence Cluster of Systems Neurology (SYNERGY), 80336 Munich, Germany.
| |
Collapse
|
12
|
Broxmeyer HE, O'Leary HA, Huang X, Mantel C. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr Opin Hematol 2015; 22:273-8. [PMID: 26049746 PMCID: PMC4721218 DOI: 10.1097/moh.0000000000000144] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. RECENT FINDINGS Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. SUMMARY Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
13
|
mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. Cell Rep 2015; 11:1614-24. [PMID: 26027936 PMCID: PMC4509707 DOI: 10.1016/j.celrep.2015.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/12/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function. mtDNA mutagenesis affects reprogramming and stemness through redox signaling Altered redox signaling can be pharmacologically rescued by NAC or MitoQ Stem cells are sensitive to mitochondria-targeted ubiquinone toxicity Pluripotent stem cells show active selection against mtDNA mutations
Collapse
|
14
|
Salama M. Aberrant cell retro-programming: a possible mechanism for neurodegeneration. Med Hypotheses 2015; 84:526. [PMID: 25703781 DOI: 10.1016/j.mehy.2015.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Mohamed Salama
- Medical Experimental Research Center (MERC), Mansoura University, Mansoura, Egypt.
| |
Collapse
|