1
|
Chambers J, Roscoe CMP, Chidley C, Wisniewska A, Duggirala A. Molecular Effects of Physical Activity and Body Composition: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:637. [PMID: 40283858 PMCID: PMC12026539 DOI: 10.3390/ijerph22040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Physical activity (PA) and body composition are important lifestyle factors that influence public health. Research suggests that DNA regions (CpG site locations) are differentially methylated in a physically active population. This meta-analysis aimed to identify CpG sites associated with various levels of PA and associated metabolic pathways. The meta-analysis followed PRISMA guidelines using PubMed, SportDISCUS, Embase, Scopus, Cochrane and Web of Science. Epigenomic analyses performed on DNA of participants with no underlying health conditions were included. Articles were screened using Rayyan AI and extracted CpG sites, and their location were confirmed using the EWAS catalogue. Six studies comprising 770 subjects were included in this meta-analysis. The meta-analysis was performed on clinical metrics extracted from the six studies and showed that BMI, blood pressure, insulin and glucose testing are significantly improved upon PA intervention. Amongst the included studies, a total of 257 CpG sites were differentially methylated in physically active participants, with 134 CpGs located in 92 genes associated with obesity-related pathways. The identified differentially methylated genes either belonged to the lipid metabolism or insulin signalling pathway. The genes which were differentially regulated in multiple tissue types and studies are JAZF1 (insulin signalling, and lipid and carbohydrate metabolism pathways) and NAV1 (mTOR signalling pathway). In conclusion, the current epigenomic meta-analysis showed that PA levels induce differential DNA methylation signatures on genes that affect metabolism. To understand the positive molecular effects of PA, further research on the above candidate genes needs to be conducted amongst various levels of a physically active population.
Collapse
Affiliation(s)
- Jenni Chambers
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Clare M. P. Roscoe
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Corinna Chidley
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Agnieszka Wisniewska
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
| | - Aparna Duggirala
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
| |
Collapse
|
2
|
Rodríguez-Martín M, Pérez-Sanz F, Zambrano C, Luján J, Ryden M, Scheer FAJL, Garaulet M. Circadian transcriptome oscillations in human adipose tissue depend on napping status and link to metabolic and inflammatory pathways. Sleep 2024; 47:zsae160. [PMID: 38995117 PMCID: PMC11543616 DOI: 10.1093/sleep/zsae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
STUDY OBJECTIVES Napping is a common habit in many countries. Nevertheless, studies about the chronic effects of napping on obesity are contradictory, and the molecular link between napping and metabolic alterations has yet to be studied. We aim to identify molecular mechanisms in adipose tissue (AT) that may connect napping and abdominal obesity. METHODS In this cross-sectional study, we extracted the RNA repeatedly across 24 hours from cultured AT explants and performed RNA sequencing. Circadian rhythms were analyzed using six consecutive time points across 24 hours. We also assessed global gene expression in each group (nappers vs. non-nappers). RESULTS With napping, there was an 88% decrease in the number of rhythmic genes compared to that in non-nappers, a reduction in rhythm amplitudes of 29%, and significant phase changes from a coherent unimodal acrophase in non-nappers, towards a scattered and bimodal acrophase in nappers. Those genes that lost rhythmicity with napping were mainly involved in pathways of glucose and lipid metabolism, and of the circadian clock. Additionally, we found differential global gene expression between nappers and non-nappers with 34 genes down- and 32 genes upregulated in nappers. The top upregulated gene (IER3) and top down-regulated pseudogene (VDAC2P2) in nappers have been previously shown to be involved in inflammation. CONCLUSIONS These new findings have implications for our understanding of napping's relationship with obesity and metabolic disorders.
Collapse
Affiliation(s)
- María Rodríguez-Martín
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Fernando Pérez-Sanz
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quirón salud, Murcia, Spain
| | - Mikael Ryden
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Foss-Freitas MC, Gilio D, da Rocha AM, Pais L, O'Leary MC, Rehm HL, Neidert A, Udler MS, Seale P, Oral EA, Chun TH. Early B-cell transcription factor-2 defect as a novel cause of lipodystrophy: disruption of the adipose tissue character and integrity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309093. [PMID: 38978649 PMCID: PMC11230304 DOI: 10.1101/2024.06.24.24309093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report a novel cause of partial lipodystrophy associated with early B cell factor 2 (EBF2) nonsense variant (EBF2 8:26033143 C>A, c.493G>T, p.E165X) in a patient with an atypical form of partial lipodystrophy. The patient presented with progressive adipose tissue loss and metabolic deterioration at pre-pubertal age. In vitro and in vivo disease modeling demonstrates that the EBF2 variant impairs adipogenesis, causing excess accumulation of undifferentiated CD34+ cells, extracellular matrix proteins, and inflammatory myeloid cells in subcutaneous adipose tissues. Thus, this EBF2 p.E165X variant disrupts adipose tissue structure and function, leading to the development of partial lipodystrophy syndrome.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Caswell Diabetes Institute and Metabolism, Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Donatella Gilio
- Caswell Diabetes Institute and Metabolism, Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andre Monteiro da Rocha
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melanie C O'Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Adam Neidert
- Caswell Diabetes Institute and Metabolism, Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Elif A Oral
- Caswell Diabetes Institute and Metabolism, Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tae-Hwa Chun
- Caswell Diabetes Institute and Metabolism, Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Biointerfaces Institute, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Fagundes RR, Bravo-Ruiseco G, Hu S, Kierans SJ, Weersma RK, Taylor CT, Dijkstra G, Harmsen HJM, Faber KN. Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway. Front Microbiol 2023; 14:1298304. [PMID: 38163085 PMCID: PMC10755969 DOI: 10.3389/fmicb.2023.1298304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). Methods Mucosal samples from patients with IBD (n = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2-HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. Results Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2-HIF1A-null cells. Conclusion Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD.
Collapse
Affiliation(s)
- Raphael R. Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gabriela Bravo-Ruiseco
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah J. Kierans
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T. Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Peraldi P, Loubat A, Chignon-Sicard B, Dani C, Ladoux A. Identification of Human Breast Adipose Tissue Progenitors Displaying Distinct Differentiation Potentials and Interactions with Cancer Cells. Biomedicines 2022; 10:biomedicines10081928. [PMID: 36009475 PMCID: PMC9406003 DOI: 10.3390/biomedicines10081928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Breast adipose tissue (AT) participates in the physiological evolution and remodeling of the mammary gland due to its high plasticity. It is also a favorable microenvironment for breast cancer progression. However, information on the properties of human breast adipose progenitor cells (APCs) involved in breast physiology or pathology is scant. We performed differential enzymatic dissociation of human breast AT lobules. We isolated and characterized two populations of APCs. Here we report that these distinct breast APC populations selectively expressed markers suitable for characterization. The population preferentially expressing ALPL (MSCA1) showed higher adipogenic potential. The population expressing higher levels of INHBA and CD142 acquired myofibroblast characteristics upon TGF-β treatment and a myo-cancer-associated fibroblast profile in the presence of breast cancer cells. This population expressed the immune checkpoint CD274 (PD-L1) and facilitated the expansion of breast cancer mammospheres compared with the adipogenic population. Indeed, the breast, as with other fat depots, contains distinct types of APCs with differences in their ability to specialize. This indicates that they were differentially involved in breast remodeling. Their interactions with breast cancer cells revealed differences in the potential for tumor dissemination and estrogen receptor expression, and these differences might be relevant to improve therapies targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Pascal Peraldi
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Agnès Loubat
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Bérengère Chignon-Sicard
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, Université Côte d’Azur, 06107 Nice, France
| | - Christian Dani
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Annie Ladoux
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- CNRS, Institute of Biology Valrose (iBV), University of Nice Sophia-Antipolis, 28 Avenue de Valombrose, CEDEX 2, 06107 Nice, France
- Correspondence:
| |
Collapse
|
6
|
Paré M, Darini CY, Yao X, Chignon-Sicard B, Rekima S, Lachambre S, Virolle V, Aguilar-Mahecha A, Basik M, Dani C, Ladoux A. Breast cancer mammospheres secrete Adrenomedullin to induce lipolysis and browning of adjacent adipocytes. BMC Cancer 2020; 20:784. [PMID: 32819314 PMCID: PMC7441622 DOI: 10.1186/s12885-020-07273-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Cancer cells cooperate with cells that compose their environment to promote tumor growth and invasion. Among them, adipocytes provide lipids used as a source of energy by cancer cells and adipokines that contribute to tumor expansion. Mechanisms supporting the dynamic interactions between cancer cells and stromal adipocytes, however, remain unclear. Methods We set-up a co-culture model with breast cancer cells grown in 3D as mammospheres and human adipocytes to accurately recapitulate intrinsic features of tumors, such as hypoxia and cancer cell–adipocytes interactions. Results Herein, we observed that the lipid droplets’ size was reduced in adipocytes adjacent to the mammospheres, mimicking adipocyte morphology on histological sections. We showed that the uncoupling protein UCP1 was expressed in adipocytes close to tumor cells on breast cancer histological sections as well as in adipocytes in contact with the mammospheres. Mammospheres produced adrenomedullin (ADM), a multifactorial hypoxia-inducible peptide while ADM receptors were detected in adipocytes. Stimulation of adipocytes with ADM promoted UCP1 expression and increased HSL phosphorylation, which activated lipolysis. Invalidation of ADM in breast cancer cells dramatically reduced UCP1 expression in adipocytes. Conclusions Breast tumor cells secreted ADM that modified cancer–associated adipocytes through paracrine signaling, leading to metabolic changes and delipidation. Hence, ADM appears to be crucial in controlling the interactions between cancer cells and adipocytes and represents an excellent target to hinder them.
Collapse
Affiliation(s)
- Martin Paré
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Cédric Y Darini
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Xi Yao
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Bérengère Chignon-Sicard
- Université Côte d'Azur, Pasteur 2 Hospital, Department of Plastic and Reconstructive Surgery, Nice, France
| | - Samah Rekima
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | - Annie Ladoux
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
7
|
Ravaud C, Paré M, Yao X, Azoulay S, Mazure NM, Dani C, Ladoux A. Resveratrol and HIV-protease inhibitors control UCP1 expression through opposite effects on p38 MAPK phosphorylation in human adipocytes. J Cell Physiol 2019; 235:1184-1196. [PMID: 31294462 DOI: 10.1002/jcp.29032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023]
Abstract
Brown and brown-like adipocytes (BBAs) control thermogenesis and are detected in adult humans. They express UCP1, which transforms energy into heat. They appear as promising cells to fight obesity. Deciphering the molecular mechanisms leading to the browning of human white adipocytes or the whitening of BBAs represents a goal to properly and safely control the pathways involved in these processes. Here, we analyzed how drugs endowed with therapeutic potential affect the differentiation of human adipose progenitor-cells into BBAs and/or their phenotype. We showed that HIV-protease inhibitors (PI) reduced UCP1 expression in BBAs modifying their metabolic profile and the mitochondria functionality. Lopinavir (LPV) was more potent than darunavir (DRV), a last PI generation. PPARγ and PGC-1α were decreased in a PI or cell-specific manner, thus altering UCP1's constitutive expression. In addition, LPV altered p38 MAPK phosphorylation, blunting then the β-adrenergic responses. In contrast, low doses of resveratrol stimulated the activatable expression of UCP1 in a p38 MAPK-dependent manner and counteracted the LPV induced loss of UCP1. This effect was independent of the resveratrol-induced sirtuin-1 expression. Altogether our results uncover how drugs impact crucial components of the networks regulating the expression of the thermogenic signature. They provide important information to control the relevant pathways involved in energy expenditure.
Collapse
Affiliation(s)
| | | | - Xi Yao
- Université Côte d'Azur, INSERM, iBV, France
| | | | - Nathalie M Mazure
- Université Côte d'Azur, Centre Antoine Lacassagne, CNRS-UMR 7284-Inserm U1081, Nice, France
| | | | | |
Collapse
|
8
|
Impairment of the activin A autocrine loop by lopinavir reduces self-renewal of distinct human adipose progenitors. Sci Rep 2017; 7:2986. [PMID: 28592814 PMCID: PMC5462747 DOI: 10.1038/s41598-017-02807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 01/15/2023] Open
Abstract
Maintenance of the adipose tissue requires a proper balance between self-renewal and differentiation of adipose progenitors (AP). Any deregulation leads either to fat overexpansion and obesity or fat loss and consequent lipodystrophies. Depending on the fat pad location, APs and adipocytes are heterogeneous. However, information on the pharmacological sensitivity of distinct APs to drugs known to alter the function of adipose tissue, especially HIV protease inhibitors (PIs) is scant. Here we show that PIs decreased proliferation and clonal expansion of APs, modifying their self-renewal potential. Lopinavir was the most potent PI tested. Decrease in self-renewal was accompanied by a reduced expression of the immediate early response gene IER3, a gene associated with tissue expansion. It was more pronounced in chin-derived APs than in knee-derived APs. Furthermore, lopinavir lowered the activin A–induced ERK1/2 phosphorylation. Expressions of the transcription factor EGR1 and its targets, including INHBA were subsequently altered. Therefore, activin A secretion was reduced leading to a dramatic impairment of APs self-renewal sustained by the activin A autocrine loop. All together, these observations highlight the activin A autocrine loop as a crucial effector to maintain APs self-renewal. Targeting this pathway by HIV-PIs may participate in the induction of unwanted side effects.
Collapse
|