1
|
Masamsetti VP, Salehin N, Kim HJ, Santucci N, Weatherstone M, McMahon R, Marshall LL, Knowles H, Sun J, Studdert JB, Aryamanesh N, Wang R, Jing N, Yang P, Osteil P, Tam PPL. Lineage contribution of the mesendoderm progenitors in the gastrulating mouse embryo. Dev Cell 2025:S1534-5807(25)00120-0. [PMID: 40132585 DOI: 10.1016/j.devcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
A population of putative mesendoderm progenitors that can contribute cellular descendants to both mesoderm and endoderm lineages is identified in the gastrulating mouse embryo. These progenitor cells are localized to the posterior epiblast, primitive streak, and nascent mesoderm of mid-streak- (E7.0) to late-streak-stage (E7.5) embryos. Lineage tracing in vivo identified that putative mesendoderm progenitors contribute descendants to the definitive endoderm and the axial mesendoderm of E7.75 embryos and to the endoderm of the foregut and hindgut of the E8.5-8.75 embryos. Differentiation of mouse epiblast stem cells identified that the choice between endoderm and mesoderm cell fates depends on the timing of Mixl1 activation upon exit from pluripotency. The knowledge gained on the spatiotemporal distribution of mesendoderm progenitors and the molecular drivers underpinning the divergence of cell lineages in these progenitors enriches our mechanistic understanding of the allocation of the tissue progenitors to germ layer derivatives in early development.
Collapse
Affiliation(s)
- V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Megan Weatherstone
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Josh B Studdert
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Nader Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Ran Wang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Arulsamy K, Xia B, Chen H, Zhang L, Chen K. Machine Learning Uncovers Vascular Endothelial Cell Identity Genes by Expression Regulation Features in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609808. [PMID: 39253493 PMCID: PMC11383289 DOI: 10.1101/2024.08.27.609808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Deciphering cell identity genes is pivotal to understanding cell differentiation, development, and many diseases involving cell identity dysregulation. Here, we introduce SCIG, a machine-learning method to uncover cell identity genes in single cells. In alignment with recent reports that cell identity genes are regulated with unique epigenetic signatures, we found cell identity genes exhibit distinctive genetic sequence signatures, e.g., unique enrichment patterns of cis-regulatory elements. Using these genetic sequence signatures, along with gene expression information from single-cell RNA-seq data, enables SCIG to uncover the identity genes of a cell without a need for comparison to other cells. Cell identity gene score defined by SCIG surpassed expression value in network analysis to uncover master transcription factors regulating cell identity. Applying SCIG to the human endothelial cell atlas revealed that the tissue microenvironment is a critical supplement to master transcription factors for cell identity refinement. SCIG is publicly available at https://github.com/kaifuchenlab/SCIG , offering a valuable tool for advancing cell differentiation, development, and regenerative medicine research.
Collapse
|
3
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
4
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
5
|
Raymond A, Liu B, Liang H, Wei C, Guindani M, Lu Y, Liang S, St John LS, Molldrem J, Nagarajan L. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy. Oncotarget 2015; 5:12675-93. [PMID: 25544748 PMCID: PMC4350356 DOI: 10.18632/oncotarget.2564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-β family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1–Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-β in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein)
Collapse
Affiliation(s)
- Aaron Raymond
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Liang
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caimiao Wei
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele Guindani
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoudan Liang
- Dept. of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa S St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeff Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lalitha Nagarajan
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Human Molecular Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Stem cell and Developmental biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Flickinger R. AT-rich repetitive DNA sequences, transcription frequency and germ layer determination. Mech Dev 2015; 138 Pt 3:227-32. [PMID: 26506258 DOI: 10.1016/j.mod.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 01/30/2023]
Abstract
Non-coding sequences of frog embryo endoderm poly (A+) nuclear RNA are AU-enriched, as compared to those of ectoderm and mesoderm. Endoderm blastomeres contain much less H1 histone than is present in ectoderm and mesoderm. H1 histone preferentially binds AT-rich DNA sequences to repress their transcription. The AT-enrichment of non-coding DNA sequences transcribed into poly (A+) nuclear RNA, as well as the low amount of H1 histone, may contribute to the higher transcription frequency of mRNA of endoderm, as compared to that of ectoderm and mesoderm. A greater accumulation of H1 histone in presumptive mesoderm and ectoderm may prevent transcription of endoderm specifying genes in mesoderm and ectoderm. Experimental upregulation of various transcription factors (TFs) can redirect germ layer fate. Most of these TFs bind AT-rich consensus sequences in DNA, suggesting that H1 histone and TFs active during germ layer determination are binding similar sequences.
Collapse
Affiliation(s)
- Reed Flickinger
- Emeritus Department, Biological Sciences State University of New York at Buffalo, Buffalo, N.Y. 14260, USA.
| |
Collapse
|
7
|
The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev Rep 2015; 10:480-93. [PMID: 24913278 DOI: 10.1007/s12015-014-9509-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.
Collapse
|
8
|
Liu S, Xu Y, Zhou Z, Feng B, Huang H. Progress and challenges in generating functional hematopoietic stem/progenitor cells from human pluripotent stem cells. Cytotherapy 2015; 17:344-58. [PMID: 25680303 DOI: 10.1016/j.jcyt.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/25/2022]
Abstract
The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) in vitro holds great potential for providing alternative sources of donor cells for clinical HSC transplantation. However, the low efficiency of current protocols for generating blood lineages and the dysfunction identified in hPSC-derived hematopoietic cells limit their use for full hematopoietic reconstitution in clinics. This review outlines the current understanding of in vitro hematopoietic differentiation from hPSCs, emphasizes the intrinsic and extrinsic molecular mechanisms that are attributed to the aberrant phenotype and function in hPSC-derived hematopoietic cells, pinpoints the current challenges to develop the truly functional HSCs from hPSCs for clinical applications and explores their potential solutions.
Collapse
Affiliation(s)
- Senquan Liu
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yulin Xu
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zijing Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; SBS Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - He Huang
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Zhang H, Nieves JL, Fraser ST, Isern J, Douvaras P, Papatsenko D, D'Souza SL, Lemischka IR, Dyer MA, Baron MH. Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells 2014; 32:191-203. [PMID: 24022884 DOI: 10.1002/stem.1536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 08/13/2013] [Indexed: 11/05/2022]
Abstract
In the mouse embryo and differentiating embryonic stem cells, the hematopoietic, endothelial, and cardiomyocyte lineages are derived from Flk1+ mesodermal progenitors. Here, we report that surface expression of Podocalyxin (Podxl), a member of the CD34 family of sialomucins, can be used to subdivide the Flk1+ cells in differentiating embryoid bodies at day 4.75 into populations that develop into distinct mesodermal lineages. Definitive hematopoietic potential was restricted to the Flk1+Podxl+ population, while the Flk1-negative Podxl+ population displayed only primitive erythroid potential. The Flk1+Podxl-negative population contained endothelial cells and cardiomyocyte potential. Podxl expression distinguishes Flk1+ mesoderm populations in mouse embryos at days 7.5, 8.5, and 9.5 and is a marker of progenitor stage primitive erythroblasts. These findings identify Podxl as a useful tool for separating distinct mesodermal lineages.
Collapse
Affiliation(s)
- Hailan Zhang
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA; The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pulina MV, Sahr KE, Nowotschin S, Baron MH, Hadjantonakis AK. A conditional mutant allele for analysis of Mixl1 function in the mouse. Genesis 2014; 52:417-23. [PMID: 24596343 DOI: 10.1002/dvg.22768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 11/10/2022]
Abstract
Mixl1 is the only member of the Mix/Bix homeobox gene family identified in mammals. During mouse embryogenesis, Mixl1 is first expressed at embryonic day (E)5.5 in cells of the visceral endoderm (VE). At the time of gastrulation, Mixl1 expression is detected in the vicinity of the primitive streak. Mixl1 is expressed in cells located within the primitive streak, in nascent mesoderm cells exiting the primitive streak, and in posterior VE overlying the primitive streak. Genetic ablation of Mixl1 in mice has revealed its crucial role in mesoderm and endoderm cell specification and tissue morphogenesis during early embryonic development. However, the early lethality of the constitutive Mixl1(-/-) mutant precludes the study of its role at later stages of embryogenesis and in adult mice. To circumvent this limitation, we have generated a conditional Mixl1 allele (Mixl1(cKO) that permits temporal as well as spatial control of gene ablation. Animals homozygous for the Mixl1(cKO) conditional allele were viable and fertile. Mixl1(KO/KO) embryos generated by crossing of Mixl1(cKO/cKO) mice with Sox2-Cre or EIIa-Cre transgenic mice were embryonic lethal at early somite stages. By contrast to wild-type embryos, Mixl1(KO/KO) embryos contained no detectable Mixl1, validating the Mixl1(cKO) as a protein null after Cre-mediated excision. Mixl1(KO/KO) embryos resembled the previously reported Mixl1(-/-) mutant phenotype. Therefore, the Mixl1 cKO allele provides a tool for investigating the temporal and tissue-specific requirements for Mixl1 in the mouse.
Collapse
Affiliation(s)
- Maria V Pulina
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | | | | | | | | |
Collapse
|
11
|
Wolfe AD, Downs KM. Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expr Patterns 2014; 15:8-20. [PMID: 24632399 DOI: 10.1016/j.gep.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Abstract
Mixl1 is thought to play important roles in formation of mesoderm and endoderm. Previously, Mixl1 expression was reported in the posterior primitive streak and allantois, but the precise spatiotemporal whereabouts of Mixl1 protein throughout gastrulation have not been elucidated. To localize Mixl1 protein, immunohistochemistry was carried out at 2-4 h intervals on mouse gastrulae between primitive streak and 16-somite pair (s) stages (~E6.5-9.5). Mixl1 localized to the entire primitive streak early in gastrulation. However, by headfold stages (~E7.75-8.0), Mixl1 diminished within the mid-streak but remained concentrated at either end of the streak, and localized throughout midline posterior visceral endoderm. At the streak's anterior end, Mixl1 was confined to the posterior crown cells of Hensen's node, which contribute to dorsal hindgut endoderm, and the posterior notochord. In the posterior streak, Mixl1 localized to the Allantoic Core Domain (ACD), which is the source of most of the allantois and contributes to the posterior embryonic-extraembryonic interface. In addition, Mix1 co-localized with the early hematopoietic marker, Runx1, in the allantois and visceral yolk sac blood islands. During hindgut invagination (4-16s, ~E8.5-9.5), Mixl1 localized to the hindgut lip, becoming concentrated within the midline anastomosis of the splanchnopleure, which appears to create the ventral component of the hindgut and omphalomesenteric artery. Surrounding the distal hindgut, Mixl1 identified midline cells within tailbud mesoderm. Mixl1 was also found in the posterior notochord. These findings provide a critical systematic, and tissue-level understanding of embryonic Mixl1 localization, and support its role in regulation of crucial posterior axial mesendodermal stem cell niches during embryogenesis.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, 4105 WIMR, Madison, WI 53705, United States
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, United States
| |
Collapse
|
12
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
13
|
Papadopoulos DK, Skouloudaki K, Adachi Y, Samakovlis C, Gehring WJ. Dimer formation via the homeodomain is required for function and specificity of Sex combs reduced in Drosophila. Dev Biol 2012; 367:78-89. [DOI: 10.1016/j.ydbio.2012.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
14
|
Pereira LA, Wong MS, Lim SM, Sides A, Stanley EG, Elefanty AG. Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. PLoS One 2011; 6:e28394. [PMID: 22164283 PMCID: PMC3229578 DOI: 10.1371/journal.pone.0028394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023] Open
Abstract
Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfrα promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity.
Collapse
Affiliation(s)
- Lloyd A. Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Pathology Department, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S. Wong
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Alexandra Sides
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| |
Collapse
|
15
|
Pereira LA, Wong MS, Mossman AK, Sourris K, Janes ME, Knezevic K, Hirst CE, Lim SM, Pimanda JE, Stanley EG, Elefanty AG. Pdgfrα and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Res 2011; 8:165-79. [PMID: 22265737 DOI: 10.1016/j.scr.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|