1
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
2
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
3
|
The Anti-inflammation Property of Olfactory Ensheathing Cells in Neural Regeneration After Spinal Cord Injury. Mol Neurobiol 2022; 59:6447-6459. [PMID: 35962300 DOI: 10.1007/s12035-022-02983-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Neural regeneration has troubled investigators worldwide in the past decades. Currently, cell transplantation emerged as a breakthrough targeted therapy for spinal cord injury (SCI) in the neurotrauma field, which provides a promising strategy in neural regeneration. Olfactory ensheathing cells (OECs), a specialized type of glial cells, is considered as the excellent candidate due to its unique variable and intrinsic regeneration-supportive properties. In fact, OECs could support olfactory receptor neuron turnover and axonal extension, which is essential to maintain the function of olfactory nervous system. Hitherto, an increasing number of literatures demonstrate that transplantation of OECs exerts vital roles in neural regeneration and functional recovery after neural injury, including central and peripheral nervous system. It is common knowledge that the deteriorating microenvironment (ischemia, hypoxia, scar, acute and chronic inflammation, etc.) resulting from injured nervous system is adverse for neural regeneration. Interestingly, recent studies indicated that OECs could promote neural repair through improvement of the disastrous microenvironments, especially to the overwhelmed inflammatory responses. Although OECs possess unusual advantages over other cells for neural repair, particularly in SCI, the mechanisms of OEC-mediated neural repair are still controversial with regard to anti-inflammation. Therefore, it is significant to summarize the anti-inflammation property of OECs, which is helpful to understand the biological characteristics of OECs and drive future studies. Here, we mainly focus on the anti-inflammatory role of OECs to make systematic review and discuss OEC-based therapy for CNS injury.
Collapse
|
4
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Wang XH, Tang XC, Li X, Qin JZ, Zhong WT, Wu P, Zhang F, Shen YX, Dai TT. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words). ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:699-708. [PMID: 34882059 DOI: 10.1080/21691401.2021.2013250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spinal cord injury (SCI) is a common pathology often resulting in permanent loss of sensory, motor, and autonomic function. Numerous studies in which stem cells have been transplanted in biomaterial scaffolds into animals have demonstrated their considerable potential for recovery from SCI. In the present study, a three-dimensional porous silk fibroin (SF) scaffold with a mean pore size of approximately 383 μm and nanofibrous structure was fabricated, the silk scaffold enabling the enhanced attachment and proliferation of bone marrow stromal cells (BMSCs). Investigation of its therapeutic potential was conducted by implantation of the nanofibrous SF scaffold seeded with BMSCs into a transected spinal cord model. Recovery of the damaged spinal cord was significantly improved after 2 months, compared with a non-nanofibrous scaffold, in combination with decreased glial fibrillary acidic protein (GFAP) expression and improved axonal regeneration at the site of injury. Furthermore, elevated Basso-Beattie-Bresnahan (BBB) scores indicated greatly improved hindlimb movement. Together, these results demonstrate that transplantation of neural scaffolds consisting of nanofibrous SF and BMSCs is an attractive strategy for the promotion of functional recovery following SCI.
Collapse
Affiliation(s)
- Xin-Hong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiao-Chen Tang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xia Li
- Department of Orthopedics, Huai'an Fourth People's Hospital, Jiangsu, China
| | - Jian-Zhong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Tao Zhong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Wu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Xin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Ting Dai
- Department of Radiation Oncology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
6
|
Mund SJK, MacPhee DJ, Campbell J, Honaramooz A, Wobeser B, Barber SM. Macroscopic, Histologic, and Immunomodulatory Response of Limb Wounds Following Intravenous Allogeneic Cord Blood-Derived Multipotent Mesenchymal Stromal Cell Therapy in Horses. Cells 2021; 10:cells10112972. [PMID: 34831196 PMCID: PMC8616408 DOI: 10.3390/cells10112972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Limb wounds are common in horses and often develop complications. Intravenous multipotent mesenchymal stromal cell (MSC) therapy is promising but has risks associated with intravenous administration and unknown potential to improve cutaneous wound healing. The objectives were to determine the clinical safety of administering large numbers of allogeneic cord blood-derived MSCs intravenously, and if therapy causes clinically adverse reactions, accelerates wound closure, improves histologic healing, and alters mRNA expression of common wound cytokines. Wounds were created on the metacarpus of 12 horses. Treatment horses were administered 1.51-2.46 × 108 cells suspended in 50% HypoThermosol FRS, and control horses were administered 50% HypoThermosol FRS alone. Epithelialization, contraction, and wound closure rates were determined using planimetric analysis. Wounds were biopsied and evaluated for histologic healing characteristics and cytokine mRNA expression. Days until wound closure was also determined. The results indicate that 3/6 of treatment horses and 1/6 of control horses experienced minor transient reactions. Treatment did not accelerate wound closure or improve histologic healing. Treatment decreased wound size and decreased all measured cytokines except transforming growth factor-β3. MSC intravenous therapy has the potential to decrease limb wound size; however, further work is needed to understand the clinical relevance of adverse reactions.
Collapse
Affiliation(s)
- Suzanne J. K. Mund
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
- Correspondence: ; Tel.: +1-306-966-7178
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (D.J.M.); (A.H.)
| | - John Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (D.J.M.); (A.H.)
| | - Bruce Wobeser
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Spencer M. Barber
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
| |
Collapse
|
7
|
Intravenous administration of human amniotic mesenchymal stem cells improves outcomes in rats with acute traumatic spinal cord injury. Neuroreport 2021; 31:730-736. [PMID: 32501888 DOI: 10.1097/wnr.0000000000001473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported that intraspinal transplantation of human amniotic mesenchymal stem cells (hAMSCs) promotes functional recovery in a rat model of acute traumatic spinal cord injury (SCI). However, whether intravenous transplantation of hAMSCs also has therapeutic benefit remains uncertain. In this study, we assessed whether intravenous transplantation of hAMSCs improves outcomes in rats with acute traumatic SCI. In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated. Adult female Sprague-Dawley rats were subjected to SCI using a weight drop device, and then hAMSCs or PBS were administered after 2 h via the tail vein. Our results indicated that transplanted hAMSCs could migrate to injured spinal cord lesion. Compared with the control group, hAMSCs transplantation significantly decreased the numbers of ED1 macrophages/microglia and caspase-3 cells, and reduced levels of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6 and IL-1β. In addition, hAMSCs transplantation significantly attenuated Evans blue extravasation, promoted angiogenesis and axonal regeneration. hAMSCs transplantation also significantly improved functional recovery. These results suggest that intravenous administration of hAMSCs provides neuroprotective effects in rats after acute SCI, and could be an alternative therapeutic approach for the treatment of acute SCI.
Collapse
|
8
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
9
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
10
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
11
|
Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci 2021; 12:494-511. [PMID: 34900347 PMCID: PMC8633588 DOI: 10.1515/tnsci-2020-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their original targets, endogenous neurotrophic factors are scarce and the sustainable delivery of exogeneous neurotrophic factors is challenging. The widely studied neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, ciliary neurotrophic factor, basic fibroblast growth factor, and glial cell-derived neurotrophic factor have a relatively short cycle that is not sufficient enough for functionally significant neural regeneration after SCI. In the past decades, scholars have tried a variety of cellular and viral vehicles as well as tissue engineering scaffolds to safely and sustainably deliver those necessary neurotrophic factors to the injury site, and achieved satisfactory neural repair and functional recovery on many occasions. Here, we review the neurotrophic factors that have been used in trials to treat SCI, and vehicles that were commonly used for their sustained delivery.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Li Shu
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Jing Liang
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, 39, Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Abudunaibi Aili
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Kan Jiang
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| |
Collapse
|
12
|
Wiseman TM, Baron-Heeris D, Houwers IGJ, Keenan R, Williams RJ, Nisbet DR, Harvey AR, Hodgetts SI. Peptide Hydrogel Scaffold for Mesenchymal Precursor Cells Implanted to Injured Adult Rat Spinal Cord. Tissue Eng Part A 2020; 27:993-1007. [PMID: 33040713 DOI: 10.1089/ten.tea.2020.0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique, biomimetic self-assembling peptide (SAP) hydrogel, Fmoc-DIKVAV, has been shown to be a suitable cell and drug delivery system in the injured brain. In this study, we assessed its utility in adult Fischer 344 (F344) rats as a stabilizing scaffold and vehicle for grafted cells after mild thoracic (thoracic level 10 [T10]) contusion spinal cord injury (SCI). Treatments were as follows: Fmoc-DIKVAV alone, Fmoc-DIKVAV containing viable or nonviable rat mesenchymal precursor cells (rMPCs), and rMPCs alone. The majority of post-SCI treatments were administered at 11-15 days (mean 13.5 days) and the results then compared to SCI-only control (no treatment) rats. Postinjury behavior was quantified using open field locomotion (BBB) and LadderWalk analysis. After perfusion at 8 weeks, longitudinal spinal cord sections were immunostained with a panel of antibodies. Qualitatively, in the SAP-only treatment group, implanted gels contained regenerate axons as well as astrocytic, immune cell, and extracellular matrix (ECM) component profiles. Grafts of Fmoc-DIKVAV plus viable or nonviable rMPCs also contained numerous macrophages/microglia and ECM components, but astrocytes were generally confined to implant margins, and axons were rare. Quantitative analysis showed that, while average cyst size was reduced in all experimental groups, the decrease compared to SCI-only controls was only significant in the SAP and rMPC treatment groups. There was gradual improvement in functionality after SCI, but a consistent trend was only seen between the rMPC treatment group and SCI-only controls. In summary, after contusion SCI, implantation of Fmoc-DIKVAV hydrogel provided a favorable microenvironment for cellular infiltration and axonal regrowth, a supportive role that unexpectedly appeared to be compromised by prior inclusion of rMPCs into the gel matrix. Impact statement The self-assembling peptide hydrogel, Fmoc-DIKVAV, is a biomimetic scaffold that is an effective cell and drug delivery system in the injured brain. We examined whether this hydrogel, alone or combined with mesenchymal precursor cells, was also able to stabilise spinal cord tissue after thoracic contusion injury and improve morphological and behavioral outcomes. While improved functionality was not consistently seen, there was reduced cyst size and increased tissue sparing in some groups. There was regenerative axonal growth into hydrogels, but only in initially cell-free implants. This type of polymer is a suitable candidate for further testing in spinal cord injury models.
Collapse
Affiliation(s)
- Tylie M Wiseman
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Danii Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Imke G J Houwers
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Rory Keenan
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Richard J Williams
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Burwood, Australia.,Biofab3D, St. Vincent's Hospital, Melbourne, Australia
| | - David R Nisbet
- Biofab3D, St. Vincent's Hospital, Melbourne, Australia.,Laboratory of Advanced Biomaterials, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| |
Collapse
|
13
|
Moinuddin FM, Yolcu YU, Wahood W, Siddiqui AM, Chen BK, Alvi MA, Goyal A, Nesbitt JJ, Windebank AJ, Yeh JC, Petrucci K, Bydon M. Early and sustained improvements in motor function in rats after infusion of allogeneic umbilical cord-derived mesenchymal stem cells following spinal cord injury. Spinal Cord 2020; 59:319-327. [PMID: 33139846 DOI: 10.1038/s41393-020-00571-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have recently been shown to hold great therapeutic potential for spinal cord injury (SCI). However, majority of the studies have been done using human cells transplanted into the rat with immunosuppression; this may not represent the outcomes that occur in humans. Herein, we present the therapeutic effect of using rat UC-MSCs (rUC-MSC) without immunosuppression in a rat model of SCI. SETTING Mayo Clinic, Rochester, MN, USA. METHODS Twelve female rats were randomly divided into two groups, control, and rUC-MSC group, and then subjected to a T9 moderate contusion SCI. Next, 2 × 106 rUC-MSCs or ringer-lactate solution were injected through the tail vein at 7 days post injury. Rats were assessed for 14 weeks by an open-field Basso, Beattie, and Bresnahan (BBB) motor score as well as postmortem quantification of axonal sparing/regeneration, cavity volume, and glial scar. RESULTS Animals treated with rUC-MSCs were found to have early and sustained motor improvement (BBB score of 14.6 ± 1.9 compared to 10.1 ± 1.7 in the control group) at 14 weeks post injury (mean difference: 4.55, 95% CI: 2.04 to 7.06; p value < 0.001). Total cavity volume in the injury epicenter was significantly reduced in the rUC-MSC group; control: 33.0% ± 2.1, rUC-MSC: 25.3% ± 3.8 (mean difference: -7.7% (95% CI: -12.3 to -2.98); p value < 0.05). In addition, spinal cords from rats treated with rUC-MSCs were found to have a significantly greater number of myelinated axons, decreased astrogliosis, and reduced glial scar formation compared to control rats. CONCLUSIONS Our study indicates that intravenous injection of allogenic UC-MSCs without immunosuppression exert beneficial effects in subacute SCI and thus could be a useful therapy to improve the functional capacity among patients with SCI.
Collapse
Affiliation(s)
- F M Moinuddin
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yagiz U Yolcu
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Waseem Wahood
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mohammed Ali Alvi
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Anshit Goyal
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA. .,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project. Cells 2020; 9:cells9051162. [PMID: 32397125 PMCID: PMC7290349 DOI: 10.3390/cells9051162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Limb wounds on horses are often slow to heal and are prone to developing exuberant granulation tissue (EGT) and close primarily through epithelialization, which results in a cosmetically inferior and non-durable repair. In contrast, wounds on the body heal rapidly and primarily through contraction and rarely develop EGT. Intravenous (IV) multipotent mesenchymal stromal cells (MSCs) are promising. They home and engraft to cutaneous wounds and promote healing in laboratory animals, but this has not been demonstrated in horses. Furthermore, the clinical safety of administering >1.00 × 108 allogeneic MSCs IV to a horse has not been determined. A proof-of-principle pilot project was performed with two horses that were administered 1.02 × 108 fluorescently labeled allogeneic cord blood-derived MSCs (CB-MSCs) following wound creation on the forelimb and thorax. Wounds and contralateral non-wounded skin were sequentially biopsied on days 0, 1, 2, 7, 14, and 33 and evaluated with confocal microscopy to determine presence of homing and engraftment. Results confirmed preferential homing and engraftment to wounds with persistence of CB-MSCs at 33 days following wound creation, without clinically adverse reactions to the infusion. The absence of overt adverse reactions allows further studies to determine effects of IV CB-MSCs on equine wound healing.
Collapse
|
15
|
Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus 2020; 46:E10. [PMID: 30835679 DOI: 10.3171/2018.12.focus18602] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell-based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.
Collapse
|
16
|
Zhang L, Zhuang X, Chen Y, Xia H. Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplant 2019; 28:1585-1602. [PMID: 31665910 PMCID: PMC6923555 DOI: 10.1177/0963689719883842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular transplantation strategies utilizing intraspinal or intrathecal olfactory
ensheathing cells (OECs) have been reported as beneficial for spinal cord injury (SCI).
However, there are many disadvantages of these methods, including additional trauma to the
spinal cord parenchyma and technical challenges. Therefore, we investigated the
feasibility and potential benefits of intravenous transplantation of OECs in a rat
hemisection SCI model. OECs derived from olfactory bulb tissue were labeled with quantum
dots (QDs), and their biodistribution after intravenous transplantation was tracked using
a fluorescence imaging system. Accumulation of the transplanted OECs was observed in the
injured spinal cord within 10 min, peaked at seven days after cell transplantation, and
decreased gradually thereafter. This time window corresponded to the blood–spinal cord
barrier (BSCB) opening time, which was quantitated with the Evans blue leakage assay.
Using immunohistochemistry, we examined neuronal growth (GAP-43), remyelination (MBP), and
microglia (Iba-1) reactions at the lesion site. Motor function recovery was also measured
using a classic open field test (Basso, Beattie and Bresnahan score). Compared with the
group injected only with QDs, the rats that received OEC transplantation exhibited a
prominent reduction in inflammatory responses, increased neurogenesis and remyelination,
and significant improvement in motor function. We suggest that intravenous injection could
also be an effective method for delivering OECs and improving functional outcomes after
SCI. Moreover, the time course of BSCB disruption provides a clinically relevant
therapeutic window for cell-based intervention.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Surgery Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China.,Both the authors are co-authors and contributed equally to this article
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Both the authors are co-authors and contributed equally to this article
| | - Yao Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
17
|
Vawda R, Badner A, Hong J, Mikhail M, Lakhani A, Dragas R, Xhima K, Barretto T, Librach CL, Fehlings MG. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl Med 2019; 8:639-649. [PMID: 30912623 PMCID: PMC6591557 DOI: 10.1002/sctm.18-0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Localized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery. A moderately severe cervical clip compression/contusion injury was induced at C7‐T1 in adult female rats, followed by an intravenous tail vein infusion 1 hour post‐SCI of (a) term‐birth human umbilical cord perivascular cells (HUCPVCs); (b) first‐trimester human umbilical cord perivascular cells (FTM HUCPVCs); (c) adult bone marrow mesenchymal stem cells; or (d) vehicle control. Weekly behavioral testing was performed. Rats were sacrificed at 24 hours or 10 weeks post‐SCI and immunohistochemistry and ultrasound imaging were performed. Both term and FTM HUCPVC‐infused rats displayed improved (p < .05) grip strength compared with vehicle controls. However, only FTM HUCPVC‐infusion led to significant weight gain. All cell infusion treatments resulted in reduced glial scarring (p < .05). Cell infusion also led to increased axonal, myelin, and vascular densities (p < .05). Although post‐traumatic cavity volume was reduced with cell infusion, this did not reach significance. Taken together, we demonstrate selective long‐term functional recovery alongside histological improvements with HUCPVC infusion in a clinically relevant model of cervical SCI. Our findings highlight the potential of these cells for acute therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alam Lakhani
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristiana Xhima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Pearse DD, Bastidas J, Izabel SS, Ghosh M. Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. Int J Mol Sci 2018; 19:E2550. [PMID: 30154346 PMCID: PMC6163303 DOI: 10.3390/ijms19092550] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
The transplantation of Schwann cells (SCs) has been shown to provide tissue preservation and support axon growth and remyelination as well as improve functional recovery across a diverse range of experimental spinal cord injury (SCI) paradigms. The autologous use of SCs has progressed to Phase 1 SCI clinical trials in humans where their use has been shown to be both feasible and safe. The contribution of immune modulation to the protective and reparative actions of SCs within the injured spinal cord remains largely unknown. In the current investigation, the ability of SC transplants to alter the innate immune response after contusive SCI in the rat was examined. SCs were intraspinally transplanted into the lesion site at 1 week following a thoracic (T8) contusive SCI. Multicolor flow cytometry and immunohistochemical analysis of specific phenotypic markers of pro- and anti-inflammatory microglia and macrophages as well as cytokines at 1 week after SC transplantation was employed. The introduction of SCs significantly attenuated the numbers of cluster of differentiation molecule 11B (CD11b)⁺, cluster of differentiation molecule 68 (CD68)⁺, and ionized calcium-binding adapter molecule 1 (Iba1)⁺ immune cells within the lesion implant site, particularly those immunoreactive for the pro-inflammatory marker, inducible nitric oxide synthase (iNOS). Whereas numbers of anti-inflammatory CD68⁺ Arginase-1 (Arg1⁺) iNOS- cells were not altered by SC transplantation, CD68⁺ cells of an intermediate, Arg1⁺ iNOS⁺ phenotype were increased by the introduction of SCs into the injured spinal cord. The morphology of Iba1⁺ immune cells was also markedly altered in the SC implant, being elongated and in alignment with SCs and in-growing axons versus their amoeboid form after SCI alone. Examination of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and anti-inflammatory cytokines, interleukin-4 (IL-4) and interleukin-10 (IL-10), by multicolor flow cytometry analysis showed that their production in CD11b⁺ cells was unaltered by SC transplantation at 1 week post-transplantation. The ability of SCs to subdue the pro-inflammatory iNOS⁺ microglia and macrophage phenotype after intraspinal transplantation may provide an important contribution to the neuroprotective effects of SCs within the sub-acute SCI setting.
Collapse
Affiliation(s)
- Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA.
| | - Johana Bastidas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Sarah S Izabel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
19
|
Baumgartner LS, Moore E, Shook D, Messina S, Day MC, Green J, Nandy R, Seidman M, Baumgartner JE. Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. J Audiol Otol 2018; 22:209-222. [PMID: 30126263 PMCID: PMC6233943 DOI: 10.7874/jao.2018.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sensorineural hearing loss (SNHL) in children is associated with neurocognitive morbidity. The cause of SNHL is a loss of hair cells in the organ of Corti. There are currently no reparative treatments for SNHL. Numerous studies suggest that cord blood mononuclear cells (human umbilical cord blood, hUCB) allow at least partial restoration of SNHL by enabling repair of a damaged organ of Corti. Our objective is to determine if hUCB is a safe treatment for moderate to severe acquired SNHL in children. Subjects and. METHODS Eleven children aged 6 months to 6 years with moderate to severe acquired SNHL were treated with intravenous autologous hUCB. The cell dose ranged from 8 to 30 million cells/kg body weight. Safety was assessed by measuring systemic hemodynamics during hUCB infusion. Infusion-related toxicity was evaluated by measuring neurologic, hepatic, renal and pulmonary function before and after infusion. Auditory function, auditory verbal language assessments and MRI with diffusion tensor imaging (DTI) were obtained before and after treatment. RESULTS All patients survived, and there were no adverse events. No infusionrelated changes in hemodynamics occurred. No infusion-related toxicity was recorded. Five subjects experienced a reduction in auditory brainstem response (ABR) thresholds. Four of those 5 subjects also experienced an improvement in cochlear nerve latencies. Comparison of MRI with DTI sequences obtained before and after treatment revealed increased fractional anisotropy in the primary auditory cortex in three of five subjects with reduced ABR thresholds. Statistically significant (p<0.05) reductions in ABR thresholds were identified. CONCLUSIONS TIntravenous hUCB is feasible and safe in children with SNHL.
Collapse
Affiliation(s)
| | - Ernest Moore
- Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, TA, USA
| | - David Shook
- Florida Hospital for Children, Orlando, FL, USA
| | | | | | | | - Rajesh Nandy
- Department of Biostatistics, School of Public Health, University of North Texas, Fort Worth, TA, USA
| | | | - James E Baumgartner
- Florida Hospital for Children, Orlando, FL, USA.,Shriner's Hospital for Children, Houston, TA, USA.,Department of Neurosurgery, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
20
|
Cortical AAV-CNTF Gene Therapy Combined with Intraspinal Mesenchymal Precursor Cell Transplantation Promotes Functional and Morphological Outcomes after Spinal Cord Injury in Adult Rats. Neural Plast 2018; 2018:9828725. [PMID: 30245710 PMCID: PMC6139201 DOI: 10.1155/2018/9828725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations.
Collapse
|
21
|
Badner A, Hacker J, Hong J, Mikhail M, Vawda R, Fehlings MG. Splenic involvement in umbilical cord matrix-derived mesenchymal stromal cell-mediated effects following traumatic spinal cord injury. J Neuroinflammation 2018; 15:219. [PMID: 30075797 PMCID: PMC6091078 DOI: 10.1186/s12974-018-1243-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background The spleen plays an important role in erythrocyte turnover, adaptive immunity, antibody production, and the mobilization of monocytes/macrophages (Mφ) following tissue injury. In response to trauma, the spleen initiates production of inflammatory cytokines, which in turn recruit immune cells to the inflamed tissue, exacerbating damage. Our previous work has shown that intravenous mesenchymal stromal cell (MSC) infusion has potent immunomodulatory effects following spinal cord injury (SCI), associated with the transplanted cells homing to and persisting within the spleen. Therefore, this work aimed to characterize the relationship between the splenic inflammatory response and SCI pathophysiology, emphasizing splenic involvement in MSC-mediated effects. Methods Using a rodent model of cervical clip-compression SCI, secondary tissue damage and functional recovery were compared between splenectomised rodents and those with a sham procedure. Subsequently, 2.5 million MSCs from the term human umbilical cord matrix cells (HUCMCs) were infused via tail vein at 1-h post-SCI and the effects were assessed in the presence or absence of a spleen. Results Splenectomy alone had no effect on lesion volume, hemorrhage, or inflammation. There was also no significant difference between the groups in functional recovery and those in lesion morphometry. Yet, while the infusion of HUCMCs reduced spinal cord hemorrhage and increased systemic levels of IL-10 in the presence of a spleen, these effects were lost with splenectomy. Further, HUCMC infusion was shown to alter the expression levels of splenic cytokines, suggesting that the spleen is an important target and site of MSC effects. Conclusions Our results provide a link between MSC function and splenic inflammation, a finding that can help tailor the cells/transplantation approach to enhance therapeutic efficacy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1243-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Justin Hacker
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St. Suite 4WW-449, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
22
|
Miranpuri GS, Schomberg DT, Stan P, Chopra A, Buttar S, Wood A, Radzin A, Meudt JJ, Resnick DK, Shanmuganayagam D. Comparative Morphometry of the Wisconsin Miniature Swine TM Thoracic Spine for Modeling Human Spine in Translational Spinal Cord Injury Research. Ann Neurosci 2018; 25:210-218. [PMID: 31000959 DOI: 10.1159/000488022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Spine and spinal cord pathologies and associated neuropathic pain are among the most complex medical disorders to treat. While rodent models are widely used in spine and spinal cord research and have provided valuable insight into pathophysiological mechanisms, these models offer limited translatability. Thus, studies in rodent models have not led to the development of clinically effective therapies. More recently, swine has become a favored model for spine research because of the high congruency of the species to humans with respect to spine and spinal cord anatomy, vasculature, and immune responses. However, conventional breeds of swine commonly used in these studies present practical and translational hurdles due to their rapid growth toward weights well above those of humans. Methods In the current study, we evaluated the suitability of a human-sized breed of swine developed at the University of Wisconsin-Madison, the Wisconsin Miniature SwineTM (WMSTM), in the context of thoracic spine morphometry for use in research to overcome limitations of conventional swine breeds. The morphometry of thoracic vertebrae (T1-T15) of 5-6 months-old WMS was analyzed and compared to published values of human and conventional swine spines. Results The key finding of this study is that WMS spine more closely models the human spine for many of the measured vertebrae parameters, while being similar to conventional swine in respect to the other parameters. Conclusion WMS provides an improvement over conventional swine for use in translational spinal cord injury studies, particularly long-term ones, because of its slower rate of growth and its maximum growth being limited to human weight and size.
Collapse
Affiliation(s)
- Gurwattan Singh Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dominic T Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Stan
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Abhishek Chopra
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Seah Buttar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aleksandar Wood
- Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra Radzin
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jennifer J Meudt
- Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel K Resnick
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dhanansayan Shanmuganayagam
- Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
EGFP transgene: a useful tool to track transplanted bone marrow mononuclear cell contribution to peripheral remyelination. Transgenic Res 2018; 27:135-153. [DOI: 10.1007/s11248-018-0062-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
|
24
|
Abstract
Spinal cord injury (SCI) represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS) impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs) has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.
Collapse
|
25
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|