1
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Liu X, Zhang H, Zhang S, Mao W, Liu L, Deng C, Hu CH. Olanzapine-induced decreases of FGF21 in brown adipose tissue via histone modulations drive UCP1-dependent thermogenetic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110692. [PMID: 36509252 DOI: 10.1016/j.pnpbp.2022.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Long-term olanzapine treatment has been associated with serious metabolism disorders, such as abnormal body weight gain, hyperglycemia, and dyslipidemia. Recently, accumulated evidence points to a link between the metabolic disorders caused by olanzapine and thermogenetic impairment. Fibroblast growth factor 21 (FGF21), a pleiotropic protein, is a potent stimulator of thermogenesis in brown adipose tissue (BAT). However, the relationship between autocrine FGF21 in BAT and thermogenetic impairment induced by olanzapine has not been investigated. In this study, C57BL/6 mice and C3H10T1/2 (a brown adipocyte cell line) were used to investigate the role of FGF21 in modulating thermogenetic impairments caused by olanzapine. Our data found a fall in BAT temperature, with a decrease in the protein levels of uncoupling protein 1 (UCP1) and FGF21 in olanzapine-treatment mice. Olanzapine-induced deficits of mitochondrial activity and the expression of UCP1 and related thermogenetic factors could be improved by FGF21-overexpression in brown adipocytes. Furthermore, ChIP-sequencing showed the H3K9me3 modification in Fgf21 was dramatically increased in BAT of mice with olanzapine treatment. Lysine-specific demethylase 4a (KDM4a), a histone demethylase responsible for site-specific erasure of H3K9me3, was decreased in olanzapine-treated C3H10T1/2 cells, whereas FGF21 and UCP1 expression and thermogenesis were upregulated in KMD2a-overexpressing brown adipocyte. We concluded that FGF21 was a crucial regulator mediating UCP1-dependent thermogenetic impairments by olanzapine-modulating histone methylations. Our results also provide novel insights into identifying a new therapeutic target for treating metabolic side effects caused by the antipsychotic drug.
Collapse
Affiliation(s)
- Xuemei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Haotian Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Shimei Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Wenxing Mao
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China; Chongqing Institute for Food and Drug Control, NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing 401121, PR China
| | - Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
4
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
5
|
Zhang M, Zhai Y, Zhang S, Dai X, Li Z. Roles of N6-Methyladenosine (m 6A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals. Front Cell Dev Biol 2020; 8:782. [PMID: 32850871 PMCID: PMC7431753 DOI: 10.3389/fcell.2020.00782] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant internal mRNA modifications, and it affects multiple biological processes related to eukaryotic mRNA. The majority of m6A sites are located in stop codons and 3′UTR regions of mRNAs. m6A regulates RNA metabolism, including alternative splicing (AS), alternative polyadenylation (APA), mRNA export, decay, stabilization, and translation. The m6A metabolic pathway is regulated by a series of m6A writers, erasers and readers. Recent studies indicate that m6A is essential for the regulation of gene expression, tumor formation, stem cell fate, gametogenesis, and animal development. In this systematic review, we summarized the recent advances in newly identified m6A effectors and the effects of m6A on RNA metabolism. Subsequently, we reviewed the functional roles of RNA m6A modification in diverse cellular bioprocesses, such as stem cell fate decisions, cell reprogramming and early embryonic development, and we discussed the potential of m6A modification to be applied to regenerative medicine, disease treatment, organ transplantation, and animal reproduction.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Yang X, Wu X, Yang Y, Gu T, Hong L, Zheng E, Xu Z, Zeng F, Shi J, Zhou R, Cai G, Wu Z, Li Z. Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression. J Reprod Dev 2019; 65:533-539. [PMID: 31631092 PMCID: PMC6923154 DOI: 10.1262/jrd.2019-070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Xist is an X-linked ribonucleic acid (RNA) gene responsible for the cis induction of X chromosome inactivation (XCI). In cloned mammalian embryos, Xist is
ectopically activated at the morula to blastocyst stage on the X chromosome that is supposed to be active, thus resulting in abnormal XCI. Suppression of erroneous Xist
expression by injecting small interfering RNA (siRNA) remarkably increased the developmental efficiency of cloned male mouse embryos by approximately 10-fold. However, injection of
anti-Xist siRNA resulted in only a slight increase in the developmental ability of injected cloned male pig embryos because the blocking effect of the injected siRNA was
not maintained beyond the morula stage, which is 5 days post-activation. To develop a more effective approach for suppressing the ectopic expression of Xist in cloned pig
embryos, we compared the silencing effect of short hairpin RNA (shRNA) and siRNA on Xist expression and the effects of these two Xist knockdown methods on
the developmental competence of cloned male pig embryos. Results indicated that an shRNA-based RNA interference (RNAi) has a longer blocking effect on Xist expression than
an siRNA-mediated RNAi. Injection of anti-Xist shRNA plasmid into two-cell-stage cloned male pig embryos effectively suppressed Xist expression, rescued XCI
at the blastocyst stage, and improved the in vitro developmental ability of injected cloned embryos. These positive effects, however, were not observed in cloned male pig
embryos injected with anti-Xist siRNA. This study demonstrates that vector-based rather than siRNA-mediated RNAi of Xist expression can be employed to
improve pig cloning efficiency.
Collapse
Affiliation(s)
- Xuqiong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Fang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu 527400, Guangdong, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu 527400, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
7
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|