1
|
Liu D, Zhao J, Li L, Wang J, Wang C, Wu Y, Huang Y, Xing D, Chen W. CD73: agent development potential and its application in diabetes and atherosclerosis. Front Immunol 2024; 15:1515875. [PMID: 39735551 PMCID: PMC11672340 DOI: 10.3389/fimmu.2024.1515875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yucun Huang
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| |
Collapse
|
2
|
Migliorini A, Nostro MC. Vascular and immune interactions in islets transplantation and 3D islet models. Curr Opin Genet Dev 2024; 88:102237. [PMID: 39111229 DOI: 10.1016/j.gde.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024]
Abstract
The aim of regenerative medicine is to restore specific functions to damaged cells or tissues. A crucial aspect of success lies in effectively reintegrating these cells or tissues within the recipient organism. This is particularly pertinent for diabetes, where islet function relies on the close connection of beta cells to the bloodstream for glucose sensing and insulin release. Central to this approach is the need to establish a fast connection with the host's vascular system. In this review, we explore the intricate relationships between endocrine, vascular, and immune cell interactions in transplantation outcomes. We also delve into recent strategies aimed at enhancing engraftment, along with the utilization of in vitro platforms to model cellular interactions.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto M5G 1L7, Ontario, Canada. https://twitter.com/@AdrianaMiglior1
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto M5G 1L7, Ontario, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
3
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
4
|
Kikuchi T, Nishimura M, Komori N, Iizuka N, Otoi T, Matsumoto S. Development and characterization of islet-derived mesenchymal stem cells from clinical grade neonatal porcine cryopreserved islets. Xenotransplantation 2024; 31:e12831. [PMID: 37846880 DOI: 10.1111/xen.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation. METHODS MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed. RESULTS Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs. CONCLUSION The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.
Collapse
Affiliation(s)
- Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Natsuki Komori
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Naho Iizuka
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Myozai-gun, Tokushima, Japan
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| |
Collapse
|
5
|
Liu P, An Y, Zhu T, Tang S, Huang X, Li S, Fu F, Chen J, Xuan K. Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy. Front Cell Infect Microbiol 2023; 13:1131218. [PMID: 36968100 PMCID: PMC10034133 DOI: 10.3389/fcimb.2023.1131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.
Collapse
Affiliation(s)
- Peisheng Liu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongqian An
- Department of Stomatology, 962 Hospital of People's Liberation Army of China, Harbin, Heilongjiang, China
| | - Ting Zhu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siyuan Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| |
Collapse
|
6
|
Kornmuller A, Cooper TT, Jani A, Lajoie GA, Flynn LE. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors. J Biomed Mater Res A 2023; 111:415-434. [PMID: 36210786 DOI: 10.1002/jbm.a.37459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
Recognizing the cell-instructive capacity of the extracellular matrix (ECM), this study investigated the effects of expanding human adipose-derived stromal cells (hASCs) on ECM-derived microcarriers fabricated from decellularized adipose tissue (DAT) or decellularized cartilage tissue (DCT) within spinner flask bioreactors. Protocols were established for decellularizing porcine auricular cartilage and electrospraying methods were used to generate microcarriers comprised exclusively of DAT or DCT, which were compositionally distinct, but had matching Young's moduli. Both microcarrier types supported hASC attachment and growth over 14 days within a low-shear spinner culture system, with a significantly higher cell density observed on the DCT microcarriers at 7 and 14 days. Irrespective of the ECM source, dynamic culture on the microcarriers altered the expression of genes and proteins associated with cell adhesion and ECM remodeling. Label-free mass spectrometry analysis showed upregulation of proteins associated with cartilage development and ECM in the hASCs expanded on the DCT microcarriers. Based on Luminex analysis, the hASCs expanded on the DCT microcarriers secreted significantly higher levels of IL-8 and PDGFAA, supporting that the ECM source can modulate hASC paracrine factor secretion. Finally, the hASCs expanded on the microcarriers were extracted for analysis of adipogenic and chondrogenic differentiation relative to baseline controls. The microcarrier-cultured hASCs showed enhanced intracellular lipid accumulation at 7 days post-induction of adipogenic differentiation. In the chondrogenic studies, a low level of differentiation was observed in all groups. Future studies are warranted using alternative cell sources with greater chondrogenic potential to further assess the chondro-inductive properties of the DCT microcarriers.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Tyler T Cooper
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Ammi Jani
- Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Zhang X, Wang X, Lee YW, Feng L, Wang B, Pan Q, Meng X, Cao H, Li L, Wang H, Bai S, Kong L, Chow DHK, Qin L, Cui L, Lin S, Li G. Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration. Bioengineering (Basel) 2022; 9:525. [PMID: 36290493 PMCID: PMC9598556 DOI: 10.3390/bioengineering9100525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 10/27/2023] Open
Abstract
We develop a poly (lactic-co-glycolic acid)/β-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xinluan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuk-wai Lee
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Qi Pan
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiangbo Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huijuan Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlong Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Bai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lingchi Kong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liao Cui
- School of Pharmacy and Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
8
|
McDonald S, Ray P, Bunn RC, Fowlkes JL, Thrailkill KM, Popescu I. Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochem 2022; 124:151940. [PMID: 35969910 DOI: 10.1016/j.acthis.2022.151940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
A primary underlying defect makes β-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, β-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main β-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype. We found that: 1) conversion to overt diabetes is paralleled by a progressive reduction of insulin-expressing cells and expansion of a glucagon-positive population, together with alteration of islet size and shape; 2) the β-cell population is highly heterogeneous in terms of insulin content and specific transcription factors like PDX1 and NKX6.1, that are gradually lost during diabetes progression; 3) GLUT2 expression is altered early and strongly reduced at late stages of diabetes; 4) an endocrine developmental program dependent on NGN3-expressing progenitors is revived when hyperglycaemia becomes severe; and 5) the re-expression of the EMT-associated factor vimentin occurs as diabetes worsens, representing a possible regenerative response to β-cell loss. Based on these results, we formulated additional hypotheses for the β-cell identity alteration in the TH model, together with several limitations of the study, that constitute future research directions.
Collapse
Affiliation(s)
- Sarah McDonald
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA
| | - Phil Ray
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Robert C Bunn
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - John L Fowlkes
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Kathryn M Thrailkill
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Iuliana Popescu
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Ghezelayagh Z, Zabihi M, Zarkesh I, Gonçalves CAC, Larsen M, Hagh-Parast N, Pakzad M, Vosough M, Arjmand B, Baharvand H, Larijani B, Grapin-Botton A, Aghayan HR, Tahamtani Y. Improved Differentiation of hESC-Derived Pancreatic Progenitors by Using Human Fetal Pancreatic Mesenchymal Cells in a Micro-scalable Three-Dimensional Co-culture System. Stem Cell Rev Rep 2021; 18:360-377. [PMID: 34586606 DOI: 10.1007/s12015-021-10266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 01/12/2023]
Abstract
Mesenchymal cells of diverse origins differ in gene and protein expression besides producing varying effects on their organ-matched epithelial cells' maintenance and differentiation capacity. Co-culture with rodent's tissue-specific pancreatic mesenchyme accelerates proliferation, self-renewal, and differentiation of pancreatic epithelial progenitors. Therefore, in our study, the impact of three-dimensional (3D) co-culture of human fetal pancreatic-derived mesenchymal cells (hFP-MCs) with human embryonic stem cell-derived pancreatic progenitors (hESC-PPs) development towards endocrine and beta cells was assessed. Besides, the ability to maintain scalable cultures combining hFP-MCs and hESC-PPs was investigated. hFP-MCs expressed many markers in common with bone marrow-derived mesenchymal stem cells (BM-MSCs). However, they showed higher expression of DESMIN compared to BM-MSCs. After co-culture of hESC-PPs with hFP-MCs, the pancreatic progenitor (PP) spheroids generated in Matrigel had higher expression of NGN3 and INSULIN than BM-MSCs co-culture group, which shows an inductive impact of pancreatic mesenchyme on hESC-PPs beta-cells maturation. Pancreatic aggregates generated by forced aggregation through scalable AggreWell system showed similar features compared to the spheroids. These aggregates, a combination of hFP-MCs and hESC-PPs, can be applied as an appropriate tool for assessing endocrine-niche interactions and developmental processes by mimicking the pancreatic tissue.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carla A C Gonçalves
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Larsen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Newsha Hagh-Parast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Zhang S, Wang Q, Ji H, Lu H, Yang Q, Yin J, Guan W. Porcine pancreas mesenchymal cell characterization and functional differentiation into insulin‑producing cells in vitro. Mol Med Rep 2021; 24:737. [PMID: 34414446 PMCID: PMC8404098 DOI: 10.3892/mmr.2021.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is a promising treatment strategy for patients with type 1 diabetes. Porcine pancreas-derived mesenchymal stromal cells (PMSCs) have emerged as one of the most widely used cell resources owing to their high proliferative capacity and multi-lineage differentiation potential. Although the induction efficiency and insulin production of induced insulin-producing cells (IPCs) derived from PMSCs have been estimated, these have primarily focused on the function of induced cells and alterations in related gene expression levels. However, morphological analyses and biological characterization of PMSCs and induced IPCs have not been conducted. Therefore, the present study aimed to optimize an induction protocol, resulting in a 78.92% induction rate. The present study investigated the biological characteristics of PMSCs and optimized a simple but functional three-step protocol to transform PMSCs into IPCs. PMSCs were isolated from 2–3-month-old Bama miniature pig embryos, which were then subcultured to passage 16. The surface markers pancreatic and duodenal homeobox 1, NK6 homeobox 1, Vimentin, Nestin, CD73, CD90, neurogenin 3, CD45 and CD34 were detected by immunofluorescence staining or flow cytometry. Proliferative capacity was evaluated by constructing growth curves of cells at three different passages. Functional differentiation was assessed by morphological observation, dithizone staining, and immunofluorescence staining of C-peptide, insulin, NK6 homeobox 1 and glucagon. The production of insulin by differentiated cells was also analyzed by performing ELISAs. The results demonstrated that differentiated cells were distributed with an islet-like structure, expressed specific markers C-peptide and insulin, and displayed glucose responsiveness. The results of the present study demonstrated that PMSCs were functionally induced into IPCs with the optimized three-step protocol, which may serve as a potential cell therapy strategy to widen the availability and promote the clinical application of cell therapy.
Collapse
Affiliation(s)
- Shang Zhang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qi Wang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hongbing Ji
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Huidi Lu
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qin Yang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jiahui Yin
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
12
|
Ćulum NM, Cooper TT, Bell GI, Hess DA, Lagugné-Labarthet F. Characterization of extracellular vesicles derived from mesenchymal stromal cells by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2021; 413:5013-5024. [PMID: 34137912 DOI: 10.1007/s00216-021-03464-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are secreted by all cells into bodily fluids and play an important role in intercellular communication through the transfer of proteins and RNA. There is evidence that EVs specifically released from mesenchymal stromal cells (MSCs) are potent cell-free regenerative agents. However, for MSC EVs to be used in therapeutic practices, there must be a standardized and reproducible method for their characterization. The detection and characterization of EVs are a challenge due to their nanoscale size as well as their molecular heterogeneity. To address this challenge, we have fabricated gold nanohole arrays of varying sizes and shapes by electron beam lithography. These platforms have the dual purpose of trapping single EVs and enhancing their vibrational signature in surface-enhanced Raman spectroscopy (SERS). In this paper, we report SERS spectra for MSC EVs derived from pancreatic tissue (Panc-MSC) and bone marrow (BM-MSC). Using principal component analysis (PCA), we determined that the main compositional differences between these two groups are found at 1236, 761, and 1528 cm-1, corresponding to amide III, tryptophan, and an in-plane -C=C- vibration, respectively. We additionally explored several machine learning approaches to distinguish between BM- and Panc-MSC EVs and achieved 89 % accuracy, 89 % sensitivity, and 88 % specificity using logistic regression.
Collapse
Affiliation(s)
- Nina M Ćulum
- Department of Chemistry, Centre for Advanced Materials and Biomaterials Research (CAMBR), University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Tyler T Cooper
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Gillian I Bell
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - David A Hess
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, Centre for Advanced Materials and Biomaterials Research (CAMBR), University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
13
|
Cooper TT, Sherman SE, Bell GI, Dayarathna T, McRae DM, Ma J, Lagugné-Labarthet F, Pasternak SH, Lajoie GA, Hess DA. Ultrafiltration and Injection of Islet Regenerative Stimuli Secreted by Pancreatic Mesenchymal Stromal Cells. Stem Cells Dev 2021; 30:247-264. [PMID: 33403929 PMCID: PMC10331161 DOI: 10.1089/scd.2020.0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and β cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.
Collapse
Affiliation(s)
- Tyler T. Cooper
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - Stephen E. Sherman
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gillian I. Bell
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Thamara Dayarathna
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | | | - Jun Ma
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | | | - Stephen H. Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| |
Collapse
|
14
|
Montanari E, Szabó L, Balaphas A, Meyer J, Perriraz-Mayer N, Pimenta J, Giraud MN, Egger B, Gerber-Lemaire S, Bühler L, Gonelle-Gispert C. Multipotent mesenchymal stromal cells derived from porcine exocrine pancreas improve insulin secretion from juvenile porcine islet cell clusters. Xenotransplantation 2021; 28:e12666. [PMID: 33538027 DOI: 10.1111/xen.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023]
Abstract
Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.
Collapse
Affiliation(s)
- Elisa Montanari
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Luca Szabó
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Alexandre Balaphas
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Nadja Perriraz-Mayer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Pimenta
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Dpt EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Sherman SE, Kuljanin M, Cooper TT, Lajoie GA, Hess DA. Purification and Functional Characterization of CD34-Expressing Cell Subsets Following Ex Vivo Expansion of Umbilical Cord Blood-Derived Endothelial Colony-Forming Cells. Stem Cells Dev 2020; 29:895-910. [DOI: 10.1089/scd.2020.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stephen E. Sherman
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tyler T. Cooper
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|