1
|
Mancinelli L, Intini G. Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Front Physiol 2023; 14:1087254. [PMID: 36818437 PMCID: PMC9931727 DOI: 10.3389/fphys.2023.1087254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Bone fractures represent a significant health burden worldwide, mainly because of the rising number of elderly people. As people become older, the risk and the frequency of bone fractures increase drastically. Such increase arises from loss of skeletal integrity and is also associated to a reduction of the bone regeneration potential. Central to loss of skeletal integrity and reduction of regeneration potential are the skeletal stem/progenitor cells (SSPCs), as they are responsible for the growth, regeneration, and repair of the bone tissue. However, the exact identity of the SSPCs has not yet been determined. Consequently, their functions, and especially dysfunctions, during aging have never been fully characterized. In this review, with the final goal of describing SSPCs dysfunctions associated to aging, we first discuss some of the most recent findings about their identification. Then, we focus on how SSPCs participate in the normal bone regeneration process and how aging can modify their regeneration potential, ultimately leading to age-associated bone fractures and lack of repair. Novel perspectives based on our experience are also provided.
Collapse
Affiliation(s)
- Luigi Mancinelli
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Giuseppe Intini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Department of Medicine (Hematology/Oncology), University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Yuan G, Li Z, Lin X, Li N, Xu R. New perspective of skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:280-294. [PMID: 36846511 PMCID: PMC9947737 DOI: 10.12336/biomatertransl.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023]
Abstract
Tissue-resident stem cells are a group of stem cells distinguished by their capacity for self-renewal and multilineage differentiation capability with tissue specificity. Among these tissue-resident stem cells, skeletal stem cells (SSCs) were discovered in the growth plate region through a combination of cell surface markers and lineage tracing series. With the process of unravelling the anatomical variation of SSCs, researchers were also keen to investigate the developmental diversity outside the long bones, including in the sutures, craniofacial sites, and spinal regions. Recently, fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing have been used to map lineage trajectories by studying SSCs with different spatiotemporal distributions. The SSC niche also plays a pivotal role in regulating SSC fate, such as cell-cell interactions mediated by multiple signalling pathways. This review focuses on discussing the spatial and temporal distribution of SSCs, and broadening our understanding of the diversity and plasticity of SSCs by summarizing the progress of research into SSCs in recent years.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zan Li
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| |
Collapse
|
3
|
Lynes MD, Carlone DL, Townsend KL, Breault DT, Tseng YH. Telomerase Reverse Transcriptase Expression Marks a Population of Rare Adipose Tissue Stem Cells. Stem Cells 2022; 40:102-111. [PMID: 35511869 PMCID: PMC9199842 DOI: 10.1093/stmcls/sxab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
In adult tissues such as adipose tissue, post-mitotic cells like adipocytes can be replaced by differentiation of a population of tissue-resident stem cells. Expression of mouse telomerase reverse transcriptase (mTert) is a hallmark of stem cell populations, and previous efforts to identify tissue-resident adult stem cells by measuring mTert expression have increased our understanding of stem cell biology significantly. Here, we used a doxycycline-inducible mouse model to perform longitudinal, live-animal lineage-tracing of mTert-expressing cells for more than 1 year. We identified a rare (<2%) population of stem cells in different fat depots that express putative preadipocyte markers. The adipose-derived mTert-positive cells are capable of self-renewal and possess adipogenic potential. Finally, we demonstrate that high-fat diet (HFD) can initiate differentiation of these cells in vivo. These data identify a population of adipose stem cells that contribute to the depot-specific response to HFD.
Collapse
Affiliation(s)
- Matthew D Lynes
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,Matthew D. Lynes, PhD, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA. Tel: 207-396-8100;
| | - Diana L Carlone
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - David T Breault
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,Corresponding author: Yu-Hua Tseng, PhD, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA. Tel: 617-309-1967;
| |
Collapse
|
4
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
5
|
Atkinson SP. A preview of selected articles. Stem Cells 2021. [DOI: 10.1002/stem.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Carlone DL, Riba-Wolman RD, Deary LT, Tovaglieri A, Jiang L, Ambruzs DM, Mead BE, Shah MS, Lengner CJ, Jaenisch R, Breault DT. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells. Stem Cells 2021; 39:296-305. [PMID: 33438789 PMCID: PMC7986156 DOI: 10.1002/stem.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self‐renewing tissues. Here we investigated the role of mTert‐expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert‐GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert‐expressing cells are a distinct SSC population with enriched colony‐forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage‐tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone‐forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.
Collapse
Affiliation(s)
- Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Rebecca D Riba-Wolman
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luke T Deary
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lijie Jiang
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dana M Ambruzs
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin E Mead
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|