1
|
Suwittayarak R, Klincumhom N, Phrueksotsai C, Limjeerajarus N, Limjeerajarus CN, Egusa H, Osathanon T. Shear stress preconditioning enhances periodontal ligament stem cell survival. Arch Oral Biol 2025; 173:106232. [PMID: 40086040 DOI: 10.1016/j.archoralbio.2025.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The study investigated in vitro the influences of shear stress preconditioning on human periodontal ligament stem cells (hPDLSCs) under serum deprivation. DESIGN hPDLSCs were subjected to shear stress at 0.5 and 5 dyn/cm², both with and without serum starvation. Cell viability and apoptosis were assessed using the Resazurin assay and flow cytometry analysis, respectively. Gene and protein expressions were analysed by real-time polymerase chain reaction, immunofluorescent staining, and Western blotting. RESULTS Our results revealed that shear stress potentially mitigated serum derivation-induced cell death by inducing cell viability, enhancing colony formation, and inhibiting cell apoptosis. The addition of an ERK inhibitor inhibited the shear stress-induced cell apoptosis resistance. Shear stress treatment upregulated cell viability-related gene expression, including SOX2, SOD1 and BIRC5. In particular, shear stress promoted the nuclear translocation of SOX2. Meanwhile, the expression of BIRC5 was not inhibited by cycloheximide. Shear stress-induced SOX2 and BIRC5 expression was attenuated by PI3K and ERK inhibitors, respectively. CONCLUSIONS Shear stress contributes to promoting SOX2 and BIRC5 expression by hPDLSCs, implicating the promotion of stemness and cell survival under serum starvation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapol Limjeerajarus
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Rojasawasthien T, Srithanyarat SS, Bulanawichit W, Osathanon T. Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells. Int Dent J 2025; 75:117-126. [PMID: 39730290 PMCID: PMC11806315 DOI: 10.1016/j.identj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed. The review highlights the role of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in mediating inflammatory responses, as well as the counteracting effects of anti-inflammatory cytokines like IL-4 and IL-10. Additionally, we underscore the involvement of toll-like receptors (TLRs), particularly TLR4, in transducing mechanical stress signals and modulating cytokine production. This review demonstrates that hPDLSCs respond to different mechanical forces with specific gene expression changes that direct inflammatory and bone remodelling signals, leading to increased osteoblast and osteoclast activity. Moreover, hPDLSCs, together with contiguous hPDL cells, respond to various mechanical forces by regulating the immune function of several immune cells. This complex relationship between the mechanical force stress, inflammation, and the cellular response in hPDLSCs warrants further research to develop therapeutic strategies for periodontal and related diseases.
Collapse
Affiliation(s)
- Thira Rojasawasthien
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand
| | - Supreda Suphanantachat Srithanyarat
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Periodontology and Dental Implants, Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wajathip Bulanawichit
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Chen Y, Chen X, Bao W, Liu G, Wei W, Ping Y. An oncolytic virus-T cell chimera for cancer immunotherapy. Nat Biotechnol 2024; 42:1876-1887. [PMID: 38336902 DOI: 10.1038/s41587-023-02118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
The efficacy of oncolytic adenoviruses (OAs) for cancer therapy has been limited by insufficient delivery to tumors after systemic injection and the propensity of OAs to induce the expression of immune checkpoints. To address these limitations, we use T cells to deliver OAs into tumors and engineer the OA to express a Cas9 system targeting the PDL1 gene encoding the immune checkpoint protein PD-L1. By cloaking OAs with cell membranes presenting T cell-specific antigens, we physically conjugated OAs onto T cell surfaces by antigen-receptor interaction. We tested the oncolytic virus-T cell chimera (ONCOTECH) via intravenous delivery in mouse cancer models, including models of melanoma, pancreatic adenocarcinoma, lung cancer and glioblastoma. In the melanoma model, the in vivo delivery of ONCOTECH resulted in a strong accumulation of OAs in tumor cells, where PD-L1 expression was reduced by 50% and the single administration of ONCOTECH enabled 80% survival over 70 days. Collectively, ONCOTECH represents a promising translational technology to combine virotherapy and cell therapy.
Collapse
Affiliation(s)
- Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Xiaohong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Li J, Sun Z, Wei X, Tan Q, He X. Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. Bioengineering (Basel) 2024; 11:1120. [PMID: 39593780 PMCID: PMC11592375 DOI: 10.3390/bioengineering11111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Porous scaffolds, whose mechanical and biological properties are greatly affected by structure, are new treatments for bone defects. Since bone repair is related to biomechanics, analyzing the osteogenesis in scaffolds based on mechanical stimulation may become a more effective method than traditional biological experiments. A tissue regeneration algorithm based on mechanical regulation theory was implemented in this study to evaluate the osteogenesis of classical scaffolds (Gyroid, I-WP, and Diamond). In vivo experiments were used to verify and supplement the simulation results. Different approaches to describing osteogenesis were discussed. Bone formation was more obvious inside the Gyroid scaffold and outside the I-WP scaffold, while the new bone was more sufficient and evenly distributed in the Diamond scaffold. The osteogenesis pattern of the bone scaffold in the simulation analysis was consistent with the results of animal experiments, and the bone volume calculated by the tissue fraction threshold method and the elastic modulus threshold method was very similar to the in vivo experiment. The mechanical responses mediated by structure affect the osteogenesis of bone scaffolds. This study provided and confirmed a simulation analysis method based on mechanical regulation theory, which is more efficient and economical for analyzing tissue healing in bioengineering.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 210096, China;
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China;
| | - Qinghua Tan
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China; (Q.T.); (X.H.)
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China; (Q.T.); (X.H.)
| |
Collapse
|
5
|
Pyne E, Reardon M, Christensen M, Rodriguez Mateos P, Taylor S, Iles A, Choudhury A, Pamme N, Pires IM. Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer transcriptomes using a spheroid-on-chip perfusion system. LAB ON A CHIP 2024; 24:4609-4622. [PMID: 39258507 PMCID: PMC11388701 DOI: 10.1039/d4lc00512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical microenvironment. Conventional cancer research methods have long relied on two-dimensional (2D) static cultures which neglect the dynamic, three-dimensional (3D) nature of the biophysical tumour microenvironment (TME), especially the role and impact of interstitial fluid flow (IFF). To address this, we undertook a transcriptome-wide analysis of the impact of IFF-like perfusion flow using a spheroid-on-chip microfluidic platform, which allows 3D cancer spheroids to be integrated into extracellular matrices (ECM)-like hydrogels and exposed to continuous perfusion, to mimic IFF in the TME. Importantly, we have performed these studies both in experimental (normoxia) and pathophysiological (hypoxia) oxygen conditions. Our data indicated that gene expression was altered by flow when compared to static conditions, and for the first time showed that these gene expression patterns differed in different oxygen tensions, reflecting a differential role of spheroid perfusion in IFF-like flow in tumour-relevant hypoxic conditions in the biophysical TME. We were also able to identify factors primarily linked with IFF-like conditions which are linked with prognostic value in cancer patients and therefore could correspond to a potential novel biomarker of IFF in cancer. This study therefore highlights the need to consider relevant oxygen conditions when studying the impact of flow in cancer biology, as well as demonstrating the potential of microfluidic models of flow to identify IFF-relevant tumour biomarkers.
Collapse
Affiliation(s)
- Emily Pyne
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
| | - Mark Reardon
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Pablo Rodriguez Mateos
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Scott Taylor
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ananya Choudhury
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Isabel M Pires
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Jiang N, Jiang J, Wang Q, Hao J, Yang R, Tian X, Wang H. Strategic targeting of miR-183 and β-catenin to enhance BMSC stemness in age-related osteoporosis therapy. Sci Rep 2024; 14:21489. [PMID: 39277663 PMCID: PMC11401869 DOI: 10.1038/s41598-024-72474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Age-related osteoporosis is a prevalent bone metabolic disorder distinguished by an aberration in the equilibrium between bone formation and resorption. The reduction in the stemness of Bone Marrow Mesenchymal Stem Cells (BMSCs) plays a pivotal role in the onset of this ailment. Comprehending the molecular pathways that govern BMSCs stemness is imperative for delineating the etiology of age-related osteoporosis and devising efficacious treatment modalities. The study utilized single-cell RNA sequencing and miRNA sequencing to investigate the cellular heterogeneity and stemness of BMSCs. Through dual-luciferase reporter assays and functional experiments, the regulatory effect of miR-183 on CTNNB1 (β-catenin) was confirmed. Overexpression and knockdown studies were conducted to explore the impact of miR-183 and β-catenin on stemness-related transcription factors Oct4, Nanog, and Sox2. Cell proliferation assays and osteogenic differentiation experiments were carried out to validate the influence of miR-183 and β-catenin on the stemness properties of BMSCs. Single-cell analysis revealed that β-catenin is highly expressed in both high stemness clusters and terminal differentiation clusters of BMSCs. Overexpression of β-catenin upregulated stemness transcription factors, while its suppression had the opposite effect, indicating a dual regulatory role of β-catenin in maintaining BMSCs stemness and promoting bone differentiation. Furthermore, the confluence of miRNA sequencing analyses and predictions from online databases revealed miR-183 as a potential modulator of BMSCs stemness and a novel upstream regulator of β-catenin. The overexpression of miR-183 effectively diminished the stemness characteristics of BMSCs by suppressing β-catenin, whereas the inhibition of miR-183 augmented stemness. These outcomes align with the observed alterations in the expression levels and functional assessments of transcription factors associated with stemness. This study provides evidence for the essential involvement of β-catenin in preserving the stemness of BMSCs, as well as elucidating the molecular mechanism through which miR-183 selectively targets β-catenin to modulate stemness. These results underscore the potential of miR-183 and β-catenin as molecular targets for augmenting the stemness of BMSCs. This strategy is anticipated to facilitate the restoration of bone microarchitecture and facilitate bone tissue regeneration by addressing potential cellular dysfunctions, thereby presenting novel targets and perspectives for the management of age-related osteoporosis.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China.
| |
Collapse
|
7
|
Suong DNA, Imamura K, Kato Y, Inoue H. Design of neural organoids engineered by mechanical forces. IBRO Neurosci Rep 2024; 16:190-195. [PMID: 38328799 PMCID: PMC10847990 DOI: 10.1016/j.ibneur.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Neural organoids consist of three-dimensional tissue derived from pluripotent stem cells that could recapitulate key features of the human brain. During the past decade, organoid technology has evolved in the field of human brain science by increasing the quality and applicability of its products. Among them, a novel approach involving the design of neural organoids engineered by mechanical forces has emerged. This review describes previous approaches for the generation of neural organoids, the engineering of neural organoids by mechanical forces, and future challenges for the application of mechanical forces in the design of neural organoids.
Collapse
Affiliation(s)
- Dang Ngoc Anh Suong
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE MultiMix Corporation, Saitama, Japan
| | - Haruhisa Inoue
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
8
|
Alasaadi DN, Mayor R. Mechanically guided cell fate determination in early development. Cell Mol Life Sci 2024; 81:242. [PMID: 38811420 PMCID: PMC11136904 DOI: 10.1007/s00018-024-05272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.
Collapse
Affiliation(s)
- Delan N Alasaadi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
10
|
Komosa ER, Lin WH, Mahadik B, Bazzi MS, Townsend D, Fisher JP, Ogle BM. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication 2023; 16:014101. [PMID: 37906964 PMCID: PMC10636629 DOI: 10.1088/1758-5090/ad084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
While the field of tissue engineering has progressed rapidly with the advent of 3D bioprinting and human induced pluripotent stem cells (hiPSCs), impact is limited by a lack of functional, thick tissues. One way around this limitation is to 3D bioprint tissues laden with hiPSCs. In this way, the iPSCs can proliferate to populate the thick tissue mass prior to parenchymal cell specification. Here we design a perfusion bioreactor for an hiPSC-laden, 3D-bioprinted chamber with the goal of proliferating the hiPSCs throughout the structure prior to differentiation to generate a thick tissue model. The bioreactor, fabricated with digital light projection, was optimized to perfuse the interior of the hydrogel chamber without leaks and to provide fluid flow around the exterior as well, maximizing nutrient delivery throughout the chamber wall. After 7 days of culture, we found that intermittent perfusion (15 s every 15 min) at 3 ml min-1provides a 1.9-fold increase in the density of stem cell colonies in the engineered tissue relative to analogous chambers cultured under static conditions. We also observed a more uniform distribution of colonies within the tissue wall of perfused structures relative to static controls, reflecting a homogeneous distribution of nutrients from the culture media. hiPSCs remained pluripotent and proliferative with application of fluid flow, which generated wall shear stresses averaging ∼1.0 dyn cm-2. Overall, these promising outcomes following perfusion of a stem cell-laden hydrogel support the production of multiple tissue types with improved thickness, and therefore increased function and utility.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Bhushan Mahadik
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - John P Fisher
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
11
|
Gysel E, Larijani L, Kallos MS, Krawetz RJ. Suicide gene-enabled cell therapy: A novel approach to scalable human pluripotent stem cell quality control. Bioessays 2023; 45:e2300037. [PMID: 37582645 DOI: 10.1002/bies.202300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
There are an increasing number of cell therapy approaches being studied and employed world-wide. An emerging area in this field is the use of human pluripotent stem cell (hPSC) products for the treatment of injuries/diseases that cannot be effectively managed through current approaches. However, as with any cell therapy, vast numbers of functional and safe cells are required. Bioreactors provide an attractive avenue to generate clinically relevant cell numbers with decreased labour and decreased batch to batch variation. Yet, current methods of performing quality control are not readily scalable to the cell densities produced during bioreactor scale-up. One potential solution is the application of inducible/controllable suicide genes that can trigger cell death in unwanted cell types. These types of approaches have been demonstrated to increase the quality and safety of the resultant cell products. In this review, we will provide background on these approaches and how they could be used together with bioreactor technology to create effective bioprocesses for the generation of high quality and safe hPSCs for use in regenerative medicine approaches.
Collapse
Affiliation(s)
- Emilie Gysel
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
13
|
Lim R, Banerjee A, Biswas R, Chari AN, Raghavan S. Mechanotransduction through adhesion molecules: Emerging roles in regulating the stem cell niche. Front Cell Dev Biol 2022; 10:966662. [PMID: 36172276 PMCID: PMC9511051 DOI: 10.3389/fcell.2022.966662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells have been shown to play an important role in regenerative medicine due to their proliferative and differentiation potential. The challenge, however, lies in regulating and controlling their potential for this purpose. Stem cells are regulated by growth factors as well as an array of biochemical and mechanical signals. While the role of biochemical signals and growth factors in regulating stem cell homeostasis is well explored, the role of mechanical signals has only just started to be investigated. Stem cells interact with their niche or to other stem cells via adhesion molecules that eventually transduce mechanical cues to maintain their homeostatic function. Here, we present a comprehensive review on our current understanding of the influence of the forces perceived by cell adhesion molecules on the regulation of stem cells. Additionally, we provide insights on how this deeper understanding of mechanobiology of stem cells has translated toward therapeutics.
Collapse
Affiliation(s)
- Ryan Lim
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Avinanda Banerjee
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
- Sastra University, Thanjavur, TN, India
| | - Anana Nandakumar Chari
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Srikala Raghavan
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| |
Collapse
|
14
|
Hatabi K, Hirohara Y, Kushida Y, Kuroda Y, Wakao S, Trosko J, Dezawa M. Inhibition of Gap Junctional Intercellular Communication Upregulates Pluripotency Gene Expression in Endogenous Pluripotent Muse Cells. Cells 2022; 11:2701. [PMID: 36078111 PMCID: PMC9455024 DOI: 10.3390/cells11172701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gap junctions (GJ) are suggested to support stem cell differentiation. The Muse cells that are applied in clinical trials are non-tumorigenic pluripotent-like endogenous stem cells, can be collected as stage-specific embryonic antigen 3 (SSEA-3+) positive cells from multiple tissues, and show triploblastic differentiation and self-renewability at a single cell level. They were reported to up-regulate pluripotency gene expression in suspension. We examined how GJ inhibition affected pluripotency gene expression in adherent cultured-Muse cells. Muse cells, mainly expressing gap junction alpha-1 protein (GJA1), reduced GJ intercellular communication from ~85% to 5-8% after 24 h incubation with 120 μM 18α-glycyrrhetinic acid, 400 nM 12-O-tetradecanoylphorbol-13-acetate, and 90 μM dichlorodiphenyltrichloroethane, as confirmed by a dye-transfer assay. Following inhibition, NANOG, OCT3/4, and SOX2 were up-regulated 2-4.5 times more; other pluripotency-related genes, such as KLF4, CBX7, and SPRY2 were elevated; lineage-specific differentiation-related genes were down-regulated in quantitative-PCR and RNA-sequencing. Connexin43-siRNA introduction also confirmed the up-regulation of NANOG, OCT3/4, and SOX2. YAP, a co-transcriptional factor in the Hippo signaling pathway that regulates pluripotency gene expression, co-localized with GJA1 (also known as Cx43) in the cell membrane and was translocated to the nucleus after GJ inhibition. Adherent culture is usually more suitable for the stable expansion of cells than is a suspension culture. GJ inhibition is suggested to be a simple method to up-regulate pluripotency in an adherent culture that involves a Cx43-YAP axis in pluripotent stem cells, such as Muse cells.
Collapse
Affiliation(s)
- Khaled Hatabi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Yukari Hirohara
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
- Regenerative Medicine Division, Life Science Institute, Inc., Tokyo 135-0004, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| | - James Trosko
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980–8575, Japan
| |
Collapse
|
15
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Suwittayarak R, Klincumhom N, Ngaokrajang U, Namangkalakul W, Ferreira JN, Pavasant P, Osathanon T. Shear Stress Enhances the Paracrine-Mediated Immunoregulatory Function of Human Periodontal Ligament Stem Cells via the ERK Signalling Pathway. Int J Mol Sci 2022; 23:ijms23137119. [PMID: 35806124 PMCID: PMC9266779 DOI: 10.3390/ijms23137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Relevant immunomodulatory effects have been proposed following allogeneic cell-based therapy with human periodontal ligament stem cells (hPDLSCs). This study aimed to examine the influence of shear stress on the immunosuppressive capacity of hPDLSCs. Cells were subjected to shear stress at different magnitudes (0.5, 5 and 10 dyn/cm2). The expression of immunosuppressive markers was evaluated in shear stress-induced hPDLSCs using qRT-PCR, western blot, enzyme activity and enzyme-linked immunosorbent assays. The effects of a shear stress-derived condition medium (SS-CM) on T cell proliferation were examined using a resazurin assay. Treg differentiation was investigated using qRT-PCR and flow cytometry analysis. Our results revealed that shear stress increased mRNA expression of IDO and COX2 but not TGF-β1 and IFN-γ. IDO activity, kynurenine and active TGF-β1 increased in SS-CM when compared to the non-shear stress-derived conditioned medium (CTL-CM). The amount of kynurenine in SS-CM was reduced in the presence of cycloheximide and ERK inhibitor. Subsequently, T cell proliferation decreased in SS-CM compared to CTL-CM. Treg differentiation was promoted in SS-CM, indicated by FOXP3, IL-10 expression and CD4+CD25hiCD127lo/− subpopulation. In conclusion, shear stress promotes kynurenine production through ERK signalling in hPDLSC, leading to the inhibition of T cell proliferation and the promotion of Treg cell differentiation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
- Correspondence:
| | - Utapin Ngaokrajang
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Worachat Namangkalakul
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.N.); (T.O.)
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.N.); (T.O.)
| |
Collapse
|
17
|
Cao M, Huang L, Jin S, Zhao M, Zheng Y. Comparative Proteomics Study of Yak Milk from Standard and Naturally Extended Lactation Using iTRAQ Technique. Animals (Basel) 2022; 12:ani12030391. [PMID: 35158713 PMCID: PMC8833776 DOI: 10.3390/ani12030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Extended lactation is a common phenomenon in lactating yaks under grazing and natural reproduction conditions. To elucidate differences in milk protein compositions and mammary gland functions between yaks of standard lactation (TL yaks) and prolonged lactation (HL yaks), whole milk samples of TL yaks and HL yaks (n = 15 each) were collected from a yak pasture at the northwest highland of China. The iTRAQ technique was used to compare the skim milk proteins in the two yak groups. A total of 202 differentially expressed proteins (DEPs) were revealed, among which 109 proteins were up-regulated and 93 were down-regulated in the milk of HL yaks compared to TL yaks. Caseins including κ-casein, αs1-casein, αs2-casein, and β-casein were up-regulated in HL yak milk over 1.43-fold. The GO function annotation analysis showed that HL yaks produced milk with characteristics of milk at the degeneration stage, similar to that of dairy cows. KEGG enrichment showed that the metabolic pathways with the most differences are those that involve carbohydrate metabolism and the biosynthesis of amino acids. The present results highlight detailed differences in skim milk proteins produced by HL yaks and TL yaks and suggest that the mammary gland of HL yak is at the degeneration stage.
Collapse
|
18
|
The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway. Int J Mol Sci 2021; 22:ijms222413549. [PMID: 34948348 PMCID: PMC8708394 DOI: 10.3390/ijms222413549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ β-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.
Collapse
|
19
|
Atkinson SP. A preview of selected articles-September 2021. Stem Cells Transl Med 2021; 10:1249-1252. [PMID: 34420262 PMCID: PMC8380439 DOI: 10.1002/sctm.21-0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
|
20
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2021. [DOI: 10.1002/stem.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|