1
|
Hu D, Li Y, Yuan W, Ye X, Wang K, Xiao Y, Peng Z, Wu Q, Zeng C, Liu J, Zhou L. Bioactive cationic polymer-based hydrogel with Engrailed-1 gene silencing and microenvironment modulation for enhanced scarless diabetic wound healing. CHEMICAL ENGINEERING JOURNAL 2025; 504:158713. [DOI: 10.1016/j.cej.2024.158713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Escamilla-Flores AV, Núñez-Anita RE, Arenas-Arrocena MC, Perez-Duran F, Calderón-Rico F, Santos-Cruz J, Acosta-Torres LS, Delgado-García JJ, Villanueva-Sánchez FG. Synthesis of biocompatible hydrogel of alginate-chitosan enriched with iron sulfide nanocrystals. SLAS Technol 2024; 29:100158. [PMID: 38908548 DOI: 10.1016/j.slast.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This work aimed to synthesize and characterize a biocompatible hydrogel of alginate and chitosan enriched with iron sulfide nanocrystals. Three concentrations of iron sulfide nanocrystals (FeS2NCs) 0.03905, 0.0781, and 0.2343 mg/ml were used. Gel swelling was determined using phosphate-buffered saline solution at 1, 2, 4, 6, 24, 48, and 72 h. The microstructure, the morphology, and the elastic strength were determined by optical microscopy, scanning electron microscopy, and rheological studies, respectively. The functional groups were identified through Fourier Transform Infrared spectroscopy. Biocompatibility was determined in a murine model; after seven days of subdermal inoculation, histological sections stained with H&E were analyzed, and then histopathological features were evaluated. All the compounds obtained showed a loss modulus lower than the storage modulus. The 0.2343 mg/ml FeS2NCs hydrogel showed higher swelling than the control. In the in vivo evaluation, no adverse effects were found. The presence of FeS2NCs was well tolerated in the subcutaneous tissue of mice, according to histopathological analysis. The hydrogels synthesized with added FeS2NCs demonstrate a swelling ratio of 150 %, rheologically exhibiting gel-like behavior rather than viscous liquids. Furthermore, they did not present any adverse effects on the subcutaneous tissue.
Collapse
Affiliation(s)
- Aish Valdemar Escamilla-Flores
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - Ma Concepción Arenas-Arrocena
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México.
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - Fernando Calderón-Rico
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - José Santos-Cruz
- Universidad Autónoma de Querétaro, Cerro de las Campanas s/n 76010, Querétaro, Mexico
| | - Laura Susana Acosta-Torres
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México.
| | - José Jorge Delgado-García
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, Loma del Bosque 103, CP 37000, León, Gto, México
| | - Francisco Germán Villanueva-Sánchez
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México
| |
Collapse
|
3
|
Nakata K, Ishikawa M, Kamei N, Miyaki S, Adachi N, Inoue K, Kawabata S. Skeletal muscle injury treatment using the Silk Elastin® injection in a rat model. Regen Ther 2024; 26:180-187. [PMID: 38948131 PMCID: PMC11214263 DOI: 10.1016/j.reth.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/04/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Background Skeletal muscle injury (SMI) is often treated conservatively, although it can lead to scar tissue formation, which impedes muscle function and increases muscle re-injury risk. However, effective interventions for SMIs are yet to be established. Hypothesis The administration of Silk Elastin® (SE), a novel artificial protein, to the SMI site can suppress scar formation and promote tissue repair. Study design A controlled laboratory study. Methods In vitro: Fibroblast migration ability was assessed using a scratch assay. SE solution was added to the culture medium, and the fibroblast migration ability was compared across different concentrations. In vivo: An SMI model was established with Sprague-Dawley rats, which were assigned to three groups based on the material injected to the SMI site: SE gel (SE group; n = 8), atelocollagen gel (Atelo group; n = 8), and phosphate buffer saline (PBS group; n = 8). Histological evaluations were performed at weeks 1 and 4 following the SMI induction. In the 1-week model, we detected the expression of transforming growth factor (TGF)-β1 in the stroma using immunohistological evaluation and real-time polymerase chain reaction analysis. In the 4-week model, we measured tibialis anterior muscle strength upon peroneal nerve stimulation as a functional assessment. Results In vitro: The fibroblast migration ability was suppressed by SE added at a concentration of 10⁴ μg/mL in the culture medium. In vivo: In the 1-week model, the SE group exhibited significantly lower TGFβ -1 expression than the PBS group. In the 4-week model, the SE group had a significantly larger regenerated muscle fiber diameter and smaller scar formation area ratio than the other two groups. Moreover, the SE group was superior to the other two groups in terms of regenerative muscle strength. Conclusion Injection of SE gel to the SMI site may inhibit tissue scarring by reducing excessive fibroblast migration, thereby enhancing tissue repair. Clinical relevance The findings of this study may contribute to the development of an early intervention method for SMIs.
Collapse
Affiliation(s)
- Kyohei Nakata
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University Hospital, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Japan
| | | | | |
Collapse
|
4
|
Kim MJ, Lee JM, Min K, Choi YS. Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil 2024; 45:53-68. [PMID: 36802005 DOI: 10.1007/s10974-023-09643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Ji Min Lee
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea.
| |
Collapse
|
5
|
Henrot P, Blervaque L, Dupin I, Zysman M, Esteves P, Gouzi F, Hayot M, Pomiès P, Berger P. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. J Cachexia Sarcopenia Muscle 2023; 14:745-757. [PMID: 36811134 PMCID: PMC10067506 DOI: 10.1002/jcsm.13103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 02/24/2023] Open
Abstract
Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Maéva Zysman
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| |
Collapse
|
6
|
Li T, Ma J, Wang W, Lei B. Bioactive MXene Promoting Angiogenesis and Skeletal Muscle Regeneration through Regulating M2 Polarization and Oxidation Stress. Adv Healthc Mater 2023; 12:e2201862. [PMID: 36427290 DOI: 10.1002/adhm.202201862] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Complete repair of skeletal muscles caused by severe mechanical damage and muscle-related diseases remains a challenge. 2D Ti3 C2 Tx (MXene) possesses special photoelectromagnetic properties and has attracted considerable attention in materials science and engineering. However, the bioactive properties and potential mechanism of MXene in tissue engineering, especially in skeletal muscle regeneration, are unclear. Herein, the antioxidation and anti-inflammation activities of MXene and its effects on myogenic differentiation and regeneration of skeletal muscle in vivo are investigated. In vitro studies have shown that MXene has excellent antioxidation and anti-inflammatory properties, and promotes myogenic differentiation and angiogenesis. MXene can remove excess reactive oxygen species in macrophage cells to alleviate oxidative stress and induce the transformation of M1 macrophages into M2 macrophages to reduce excessive inflammation, which can significantly promote the proliferation and differentiation of myoblasts, as well as the proliferation, migration, and tube formation of endothelial cells. Animal experiments with rat tibial anterior muscle defects show that MXene can promote angiogenesis, muscle fiber formation, and skeletal muscle regeneration by regulating the cell microenvironment through anti-inflammatory and antioxidant pathways. The findings suggest that MXene can be used as a multifunctional bioactive material to enhance tissue regeneration through robust antioxidation, anti-inflammation, and angiogenesis activities.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wensi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory for Mechanical Behavior of Materials, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
8
|
Zhou L, Ge J, Wang M, Chen M, Cheng W, Ji W, Lei B. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. Bioact Mater 2021; 6:1605-1617. [PMID: 33294737 PMCID: PMC7691551 DOI: 10.1016/j.bioactmat.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The completed skeletal muscle regeneration resulted from severe injury and muscle-related disease is still a challenge. Here, we developed an injectable muscle-adhesive antioxidant conductive bioactive photothermo-responsive nanomatrix for regulating the myogenic differentiation and promoting the skeletal muscle regeneration in vivo. The multifunctional nanomatrix was composed of polypyrrole@polydopamine (PPy@PDA, 342 ± 5.6 nm) nanoparticles-crosslinked Pluronic F-127 (F127)-polycitrate matrix (FPCP). The FPCP nanomatrix demonstrated inherent multifunctional properties including excellent photothermo-responsive and shear-thinning behavior, muscle-adhesive feature, injectable ability, electronic conductivity (0.48 ± 0.03 S/m) and antioxidant activity and photothermal function. The FPCP nanomatrix displayed better photothermal performance with near-infrared irradiation, which could provide the photo-controlled release of protein (91% ± 2.6% of BSA was released after irradiated 3 times). Additionally, FPCP nanomatrix could significantly enhance the cell proliferation and myogenic differentiation of mouse myoblast cells (C2C12) by promoting the expressions of myogenic genes (MyoD and MyoG) and myosin heavy chain (MHC) protein with negligible cytotoxicity. Based on the multifunctional properties, FPCP nanomatrix efficiently promoted the full-thickness skeletal muscle repair and regeneration in vivo, through stimulating the angiogenesis and myotube formation. This study firstly indicated the vital role of multifunctional PPy@PDA nanoparticles in regulating myogenic differentiation and skeletal muscle regeneration. This work also suggests that rational design of bioactive matrix with multifunctional feature would greatly enhance the development of regenerative medicine.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
9
|
Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti 3C 2T x MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS NANO 2021; 15:2468-2480. [PMID: 33565857 DOI: 10.1021/acsnano.0c06287] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chronic bacterial-infected wound healing/skin regeneration remains a challenge due to drug resistance and the poor quality of wound repair. The ideal strategy is combating bacterial infection, while facilitating satisfactory wound healing. However, the reported strategy hardly achieves these two goals simultaneously without the help of antibiotics or bioactive molecules. In this work, a two-dimensional (2D) Ti3C2Tx MXene with excellent conductivity, biocompatibility, and antibacterial ability was applied in developing multifunctional scaffolds (HPEM) for methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. HPEM scaffolds were fabricated by the reaction between the poly(glycerol-ethylenimine), Ti3C2Tx MXene@polydopamine (MXene@PDA) nanosheets, and oxidized hyaluronic acid (HCHO). HPEM scaffolds presented multifunctional properties containing self-healing behavior, electrical conductivity, tissue-adhesive feature, antibacterial activity especially for MRSA resistant to many commonly used antibiotics (antibacterial efficiency was 99.03%), and rapid hemostatic capability. HPEM scaffolds enhanced the proliferation of normal skin cells with negligible toxicity. Additionally, HPEM scaffolds obviously accelerated the MRSA-infected wound healing (wound closure ratio was 96.31%) by efficient anti-inflammation effects, promoting cell proliferation, and the angiogenic process, stimulating granulation tissue formation, collagen deposition, vascular endothelial differentiation, and angiogenesis. This study indicates the important role of multifunctional 2D MXene@PDA nanosheets in infected wound healing. HPEM scaffolds with multifunctional properties provide a potential strategy for MRSA-infected wound healing/skin regeneration.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shenqiang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhao Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fang Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Jie Kong
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fengtao Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
10
|
Zhou L, Zheng H, Wang S, Zhou F, Lei B, Zhang Q. Biodegradable conductive multifunctional branched poly(glycerol-amino acid)-based scaffolds for tumor/infection-impaired skin multimodal therapy. Biomaterials 2020; 262:120300. [PMID: 32891908 DOI: 10.1016/j.biomaterials.2020.120300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
The tumor/infection-impaired skin regeneration is still a challenge and the single modal therapy strategy is usually inefficient. Herein, a multimodal tumor therapy and antiinfection method based on the conductive multifunctional poly(glycerol-amino acid)-based scaffolds is reported. The multifunctional conductive scaffolds were formed through the crosslinking between branched poly(glycerol-amino acid), polypyrrole@polydopamine (PPy@PDA) nanoparticles and aldehyde F127 (PGFP scaffolds). PGFP scaffolds possessed controlled electrical conductivity, skin-adhesive behavior, broad-spectrum antibacterial activity, photothermal-responsive drug release and good cytocompatibility. Thus, PGFP scaffolds demonstrated the significant photothermo-chemo tumor and multidrug resistant infection therapy in vitro and in vivo, while promoting granulation tissue formation, collagen deposition, vascular endothelial differentiation and accelerated skin regeneration. This work also firstly demonstrated the important role of multifunctional conductive PPy@PDA nanoparticles in tumor/infection-impaired skin multimodal therapy. This study suggests that efficient multimodal therapy on diseased-impaired skin could be achieved through optimizing the structure and multifunctional properties of biomaterials.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shenqiang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Fengtao Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China; Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
11
|
Rossi E, Poirault-Chassac S, Bieche I, Chocron R, Schnitzler A, Lokajczyk A, Bourdoncle P, Dizier B, Bacha NC, Gendron N, Blandinieres A, Guerin CL, Gaussem P, Smadja DM. Human Endothelial Colony Forming Cells Express Intracellular CD133 that Modulates their Vasculogenic Properties. Stem Cell Rev Rep 2020; 15:590-600. [PMID: 30879244 DOI: 10.1007/s12015-019-09881-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.
Collapse
Affiliation(s)
- Elisa Rossi
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Sonia Poirault-Chassac
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Ivan Bieche
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Richard Chocron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S970, Paris, France.,AP-HP, Emergency Medicine Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Schnitzler
- Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Anna Lokajczyk
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Pierre Bourdoncle
- Plate-forme IMAG'IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Blandine Dizier
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nour C Bacha
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nicolas Gendron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Adeline Blandinieres
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Coralie L Guerin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,Cytometry Unit, Institut Curie, Paris, France
| | - Pascale Gaussem
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Inserm UMR-S1140, Paris, France. .,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France. .,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
12
|
Liu L, Broszczak DA, Broadbent JA, Singh DP, Steck R, Parker TJ, Peake JM. Comparative label-free mass spectrometric analysis of temporal changes in the skeletal muscle proteome after impact trauma in rats. Am J Physiol Endocrinol Metab 2020; 318:E1022-E1037. [PMID: 32255681 DOI: 10.1152/ajpendo.00433.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteomics offers the opportunity to identify and quantify many proteins and to explore how they correlate and interact with each other in biological networks. This study aimed to characterize changes in the muscle proteome during the destruction, repair, and early-remodeling phases after impact trauma in male Wistar rats. Muscle tissue was collected from uninjured control rats and rats that were euthanized between 6 h and 14 days after impact injury. Muscle tissue was analyzed using unbiased, data-independent acquisition LC-MS/MS. We identified 770 reviewed proteins in the muscle tissue, 296 of which were differentially abundant between the control and injury groups (P ≤ 0.05). Around 50 proteins showed large differences (≥10-fold) or a distinct pattern of abundance after injury. These included proteins that have not been identified previously in injured muscle, such as ferritin light chain 1, fibrinogen γ-chain, fibrinogen β-chain, osteolectin, murinoglobulin-1, T-kininogen 2, calcium-regulated heat-stable protein 1, macrophage-capping protein, retinoid-inducible serine carboxypeptidase, ADP-ribosylation factor 4, Thy-1 membrane glycoprotein, and ADP-ribosylation factor-like protein 1. Some proteins increased between 6 h and 14 days, whereas other proteins increased in a more delayed pattern at 7 days after injury. Bioinformatic analysis revealed that various biological processes, including regulation of blood coagulation, fibrinolysis, regulation of wound healing, tissue regeneration, acute inflammatory response, and negative regulation of the immune effector process, were enriched in injured muscle tissue. This study advances the understanding of early muscle healing after muscle injury and lays a foundation for future mechanistic studies on interventions to treat muscle injury.
Collapse
Affiliation(s)
- Lian Liu
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Daniel A Broszczak
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - James A Broadbent
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St. Lucia, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roland Steck
- Queensland University of Technology, Medical Engineering Research Facility, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Tony J Parker
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| |
Collapse
|
13
|
MacLaughlin KJ, Barton GP, Braun RK, Eldridge MW. Effect of intermittent hyperoxia on stem cell mobilization and cytokine expression. Med Gas Res 2020; 9:139-144. [PMID: 31552878 PMCID: PMC6779002 DOI: 10.4103/2045-9912.266989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The best known form of oxygen therapy is hyperbaric oxygen (HBO) therapy, which increases both concentration and atmospheric pressure. HBO supports tissue regeneration and is indicated in an increasing number of pathologies. Less known but still showing some promising effects is normobaric oxygen (NBO) therapy, which provides some advantages over HBO including eliminating barotrauma risk, increased ease of administration and a significant cost reduction. However, still little is known about differences and similarities in treatment effects between HBO and NBO. Therefore we tested whether NBO induces a biological response comparable to HBO with a focus on stem progenitor cell mobilization and changes in serum cytokine concentration. We randomly assigned Sprague-Dawley rats into an NBO treatment group (n = 6), and a room air control group (n = 6). The NBO treatment group was exposed to 42% oxygen for 2 hours a day for 10 days. The room air group was concurrently kept at 20.9% oxygen. The frequency and number of stem progenitor cells in peripheral blood were analyzed by flow cytometry. Plasma cytokine expression was analyzed by cytokine array enzyme linked immunosorbent assay. All analyses were performed 24 hours after the final exposure to control for transient post treatment effects. The NBO treatment group showed an increase in circulating CD133+/CD45+ stem progenitor cell frequency and number compared to the room air control group. This rise was largely caused by CD34- stem progenitor cells (CD133+/CD34-/CD45+) without changes in the CD34+ population. The plasma cytokine levels tested were mostly unchanged with the exception of tumor necrosis factor-α which showed a decrease 24 hours after the last NBO exposure. These findings support our hypothesis that NBO induces a biological response similar to HBO, affecting serum stem progenitor cell populations and tumor necrosis factor-α concentration. The study was approved by Institutional Animal Care and Use Committee (IACUC) of the University of Wisconsin, Madison, WI, USA (approval No. M005439) on June 28, 2016.
Collapse
Affiliation(s)
- Kent J MacLaughlin
- Department of Pediatrics; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA
| | - Gregory P Barton
- Department of Pediatrics; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA
| | - Rudolf K Braun
- Department of Pediatrics; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA
| | - Marlowe W Eldridge
- Department of Pediatrics; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Jia W, Hu H, Li A, Deng H, Hogue CL, Mauro JC, Zhang C, Fu Q. Glass-activated regeneration of volumetric muscle loss. Acta Biomater 2020; 103:306-317. [PMID: 31830584 DOI: 10.1016/j.actbio.2019.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Volumetric muscle loss (VML) resulting from injuries to skeletal muscles has profound consequences in healthcare. Current VML treatment based on the use of soft materials including biopolymers and decellularized extracellular matrix (dECM) is challenging due to their incapability of stimulating the formation of satellite cells (SCs), muscle stem cells, which are required for muscle regeneration. Additional stem cells and/or growth factors have to be incorporated in these constructs for improved efficacy. Here we report an approach by using bioactive glasses capable of regenerating VML without growth factors or stem cells. One silicate and two borate compositions with different degradation rates (2.4% for silicate 45S5; 5.3% and 30.4% for borate 8A3B and 13-93B3, respectively, in simulated body fluid (SBF) at 37 °C for 30 days) were used for this study. Our in vitro models demonstrate the ability of ions released from bioactive glasses in promoting angiogenesis and stimulating cells to secrete critical muscle-related growth factors. We further show the activation of SCs and the regeneration of skeletal muscles in a rat VML model. Considering these promising results, this work reveals a potentially simple and safe approach to regenerating skeletal muscle defects. STATEMENT OF SIGNIFICANCE: (1) This is the first report on an inorganic material used in skeletal muscle regeneration through in vitro and in vivo models. (2) Bioactive glass is found to activate the production of satellite cells (SCs), muscle stem cells, without the incorporation of extra stem cells or growth factors. (3) The work represents a simple, safe, low-cost yet efficient means for healing muscle defects.
Collapse
|
15
|
Lan C, Long L, Xie K, Liu J, Zhou L, Pan S, Liang J, Tu Z, Gao Z, Tang Y. miRNA-429 suppresses osteogenic differentiation of human adipose-derived mesenchymal stem cells under oxidative stress via targeting SCD-1. Exp Ther Med 2019; 19:696-702. [PMID: 31885708 PMCID: PMC6913378 DOI: 10.3892/etm.2019.8246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Role of microRNA-429 (miRNA-429) in osteogenic differentiation of hADMSCs was elucidated to explore the potential mechanism. Serum level of miRNA-429 in osteoporosis patients and controls was determined by quantitative real-time polymerase chain reaction (qRT-PCR). After H2O2 induction in hADMSCs, cell viability and reactive oxygen species (ROS) level were determined by cell-counting kit (CCK-8) assay and flow cytometry, respectively. Alkaline phosphatase (ALP) activity in H2O2-induced hADMSCs was also detected. The binding condition between miRNA-429 and SCD-1 was verified by dual-luciferase reporter gene assay. Relative levels of osteogenesis-related genes influenced by SCD-1 and miRNA-429 were detected by qRT-PCR. Furthermore, regulatory effects of SCD-1 and miRNA-429 on ALP activity and calcification ability of hADMSCs were evaluated. miRNA-429 was significantly upregulated in serum of osteoporosis patients. During the process of osteogenesis differentiation, H2O2 induction gradually upregulated miRNA-429 in hADMSCs. Overexpression of miRNA-429 markedly reduced ALP activity. Subsequent dual-luciferase reporter gene assay verified that miRNA-429 could bind to SCD-1 and negatively regulated its protein level in hADMSCs. SCD-1 was obviously downregulated in the osteogenesis differentiation of hADMSCs under oxidative stress. Moreover, silencing of SCD-1 suppressed expression of osteogenesis-related gene, ALP activity and calcification ability. Notably, SCD-1 knockdown partially reversed the regulatory effect of miRNA-429 on the osteogenic differentiation of hADMSCs. miRNA-429 suppresses the osteogenic differentiation of hADMSCs under oxidative stress via downregulating SCD-1.
Collapse
Affiliation(s)
- Changgong Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Lizhen Long
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Kegong Xie
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Landao Zhou
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Shengcai Pan
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Junqing Liang
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhenyang Tu
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Ziran Gao
- Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yujin Tang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
16
|
Greising SM, Corona BT, McGann C, Frankum JK, Warren GL. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:510-525. [PMID: 31578930 DOI: 10.1089/ten.teb.2019.0207] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our goal was to understand the impact of regenerative therapies on the functional capacity of skeletal muscle following volumetric muscle loss (VML) injury. An extensive database search (e.g., PubMed, Cochrane Library, and ClinicalTrials.gov) was conducted up through January 2019 to evaluate the following: "In humans or animals with VML injury, is treatment better than no treatment at recovering functional capacity?" Study eligibility criteria required studies to have both an untreated and at least one treated VML injury group. From 2312 study reports, 44 studies met the inclusion criteria. Quantitative functional capacity data (absolute and/or normalized strength) or proportional measures (histological analysis quantifying viable muscle tissue, mitochondrial function, and/or exhaustive treadmill running) were extracted for use. While both human and animal studies were included in the searches, only animal studies met the eligibility criteria. Using a random-effects model, Hedges' g was used as the effect size (ES) and calculated such that a positive ES indicated treatment efficacy. The overall ES was 0.75 (95% confidence interval: 0.53-0.96; p < 0.0000001), indicating that the treatments, on average, resulted in a significant improvement in functional capacity. From network meta-analyses, it was determined that an acellular biomaterial combined with stem and/or progenitor cells had the greatest treatment effectiveness. The findings indicate that various treatments in animal models of VML improve the functional capacity of muscle compared to leaving the injury untreated; however, the ∼16% beneficial effect is small. Our results suggest that current regenerative therapy paradigms require further maturation to achieve clinically meaningful improvements in the functional capacity of the muscle. Impact Statement Our most salient findings are that (1) various treatment approaches used in animal models of volumetric muscle loss (VML) injury improve functional capacity compared to leaving the injury untreated and (2) an acellular biomaterial in combination with cellular components was the most effective treatment to improve functional capacity following VML injury to date. The nature of our findings has substantial implications for regenerative medicine, biomedical engineering, and rehabilitative techniques currently being evaluated and developed for VML injury repair, and are pivotal to the progression of the regenerative medicine effort aimed at restoring maximal function to traumatized and disabled limbs.
Collapse
Affiliation(s)
- Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Christopher McGann
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Jeremy K Frankum
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
17
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
18
|
Abstract
Aging is the result of two overlapping processes, "intrinsic" and "extrinsic." Intrinsic structural changes occur as a consequence of physiologic aging and are genetically determined; extrinsic relates to exposure to harmful events and habits, like smoking, bad diet, alcohol consumption, lack of sleep, stress, sun exposure, environmental pollution, etc. Aging may be decelerated by improving bad habits or treating signs of aging with various esthetic methods, food supplements, and antioxidants. It is believed that we cannot stop aging entirely due to the intrinsic part, which leads to irreversible cell damage, as well as tissue and organ damage due to their limited ability to regenerate. Stem cells and their ability to exhibit telomerase activity, to self-renew, and to differentiate into all three embryonic tissues challenges aging as a process, which is not inevitable and can even possibly be reversed. Stem cells can promote regeneration of aged tissues and organs by replacing apoptotic and necrotic cells with healthy ones. In addition, they can have antiinflammatory and antiapoptotic properties by paracrine-secreting growth factors and cytokines on the site of administration. Autologous adipose-derived stem cells are the most promising because they can be easily harvested in huge numbers with minimally invasive liposuction and, as such, represent a powerful tool in anti-aging and regenerative medicine. In this contribution, the author discusses their properties and application in clinical practice.
Collapse
|
19
|
Santamaria X, Mas A, Cervelló I, Taylor H, Simon C. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update 2019; 24:673-693. [PMID: 30239705 DOI: 10.1093/humupd/dmy028] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Stem cell research in the endometrium and myometrium from animal models and humans has led to the identification of endometrial/myometrial stem cells and their niches. This basic knowledge is beginning to be translated to clinical use for incurable uterine pathologies. Additionally, the implication of bone marrow-derived stem cells (BMDSCs) in uterine physiology has opened the field for the exploration of an exogenous and autologous source of stem cells. OBJECTIVE AND RATIONALE In this review, we outline the progress of endometrial and myometrial stem/progenitor cells in both human and mouse models from their characterization to their clinical application, indicating roles in Asherman syndrome, atrophic endometrium and tissue engineering, among others. SEARCH METHODS A comprehensive search of PubMed and Google Scholar up to December 2017 was conducted to identify peer-reviewed literature related to the contribution of bone marrow, endometrial and myometrial stem cells to potential physiological regeneration as well as their implications in pathologies of the human uterus. OUTCOMES The discovery and main characteristics of stem cells in the murine and human endometrium and myometrium are presented together with the relevance of their niches and cross-regulation. The current state of advanced stem cell therapy using BMDSCs in the treatment of Asherman syndrome and atrophic endometrium is analyzed. In the myometrium, the understanding of genetic and epigenetic defects that result in the development of tumor-initiating cells in the myometrial stem niche and thus contribute to the growth of uterine leiomyoma is also presented. Finally, recent advances in tissue engineering based on the creation of novel three-dimensional scaffolds or decellularisation open up new perspectives for the field of uterine transplantation. WIDER IMPLICATIONS More than a decade after their discovery, the knowledge of uterine stem cells and their niches is crystalising into novel therapeutic approaches aiming to treat with cells those conditions that cannot be cured with drugs, particularly the currently incurable uterine pathologies. Additional work and improvements are needed, but the basis has been formed for this therapeutic application of uterine cells.
Collapse
Affiliation(s)
- Xavier Santamaria
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Reproductive Medicine Department, IVI Barcelona, Barcelona, Spain.,Department of Obstetrics and Gynecology, Biomedical Research Group in Gynecology, Vall Hebron Institut de Recerca, Barcelona, Spain
| | - Aymara Mas
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Obstetrics and Gynecology, Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Irene Cervelló
- Department of Obstetrics and Gynecology, Fundación Instituto Valenciano de Infertilidad (FIVI), and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Hugh Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Simon
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Pediatrics, Obstetrics, and Gynecology, Valencia University and INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
22
|
Kamei N, Adachi N, Ochi M. Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues. Regen Ther 2018; 9:116-119. [PMID: 30525082 PMCID: PMC6222975 DOI: 10.1016/j.reth.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic targeting is a cell delivery system using the magnetic labeling of cells and the magnetic field; it has been developed for minimally invasive cell transplantation. Cell transplantation with both minimal invasiveness and high efficacy on tissue repair can be achieved by this system. Magnetic targeting has been applied for the transplantation of bone marrow mesenchymal stem cells, blood CD133-positive cells, neural progenitor cells, and induced pluripotent stem cells, and for the regeneration of bone, cartilage, skeletal muscles, and the spinal cord. It enhances the accumulation and adhesion of locally injected cells, resulting in the improvement of tissue regeneration. It is a promising technique for minimally invasive and effective cell transplantation therapy.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuo Ochi
- President of Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
23
|
de Lázaro I, Yilmazer A, Nam Y, Qubisi S, Razak FMA, Degens H, Cossu G, Kostarelos K. Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Mol Ther 2018; 27:59-75. [PMID: 30470628 DOI: 10.1016/j.ymthe.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Overexpression of Oct3/4, Klf4, Sox2, and c-Myc (OKSM) transcription factors can de-differentiate adult cells in vivo. While sustained OKSM expression triggers tumorigenesis through uncontrolled proliferation of toti- and pluripotent cells, transient reprogramming induces pluripotency-like features and proliferation only temporarily, without teratomas. We sought to transiently reprogram cells within mouse skeletal muscle with a localized injection of plasmid DNA encoding OKSM (pOKSM), and we hypothesized that the generation of proliferative intermediates would enhance tissue regeneration after injury. Intramuscular pOKSM administration rapidly upregulated pluripotency (Nanog, Ecat1, and Rex1) and early myogenesis genes (Pax3) in the healthy gastrocnemius of various strains. Mononucleated cells expressing such markers appeared in clusters among myofibers, proliferated only transiently, and did not lead to dysplasia or tumorigenesis for at least 120 days. Nanog was also upregulated in the gastrocnemius when pOKSM was administered 7 days after surgically sectioning its medial head. Enhanced tissue regeneration after reprogramming was manifested by the accelerated appearance of centronucleated myofibers and reduced fibrosis. These results suggest that transient in vivo reprogramming could develop into a novel strategy toward the acceleration of tissue regeneration after injury, based on the induction of transiently proliferative, pluripotent-like cells in situ. Further research to achieve clinically meaningful functional regeneration is warranted.
Collapse
Affiliation(s)
- Irene de Lázaro
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Acelya Yilmazer
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK
| | - Yein Nam
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Sara Qubisi
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Fazilah Maizatul Abdul Razak
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Manchester M13 9PL, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK.
| |
Collapse
|
24
|
Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y, Gao C, Ma PX, Lei B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018; 175:19-29. [PMID: 29793089 DOI: 10.1016/j.biomaterials.2018.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Under the severe trauma condition, the skeletal muscles regeneration process is inhibited by forming fibrous scar tissues. Understanding the interaction between bioactive nanomaterials and myoblasts perhaps has important effect on the enhanced skeletal muscle tissue regeneration. Herein, we investigate the effect of monodispersed gold and gold-silver nanoparticles (AuNPs and Au-AgNPs) on the proliferation, myogenic differentiation and associated molecular mechanism of myoblasts (C2C12), as well as the in vivo skeletal muscle tissue regeneration. Our results showed that AuNPs and Au-AgNPs could support myoblast attachment and proliferation with negligible cytotoxicity. Under various incubation conditions (normal and differentiation medium), AuNPs and Au-AuNPs significantly enhanced the myogenic differentiation of myoblasts by upregulating the expressions of myosin heavy chain (MHC) protein and myogenic genes (MyoD, MyoG and Tnnt-1). The further analysis demonstrated that AuNPs and Au-AgNPs could activate the p38α mitogen-activated protein kinase pathway (p38α MAPK) signaling pathway and enhance the myogenic differentiation. Additionally, the AuNPs and Au-AgNPs significantly promote the in vivo skeletal muscle regeneration in a tibialis anterior muscle defect model of rat. This study may provide a nanomaterials-based strategy to improve the skeletal muscle repair and regeneration.
Collapse
Affiliation(s)
- Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kai Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chuanbo Gao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peter X Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; Department of Biomedical Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor MI 48109-1078, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109-1078, USA
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
25
|
Zhu M, Miao B, Zhu J, Wang H, Zhou Z. Transplantation of periodontal ligament cell sheets expressing human β‑defensin‑3 promotes anti‑inflammation in a canine model of periodontitis. Mol Med Rep 2017; 16:7459-7467. [PMID: 28944821 PMCID: PMC5865878 DOI: 10.3892/mmr.2017.7514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β-defensin-3 (HBD-3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti-inflammatory effect of periodontal tissue engineered by HBD-3 gene-modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD-3. The effect of the cell sheets on anti-inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD-3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD-3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti-inflammatory effect.
Collapse
Affiliation(s)
- Minwen Zhu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Bo Miao
- Department of Stomatology, Aviation General Hospital of China Medical University, Beijing 100012, P.R. China
| | - Jianhua Zhu
- Department of Periodontal Mucosa, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Haiyan Wang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zengtong Zhou
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
26
|
Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, Schachner M. Lentiviral Delivery of miR-133b Improves Functional Recovery After Spinal Cord Injury in Mice. Mol Neurobiol 2017; 54:4659-4671. [PMID: 27412702 DOI: 10.1007/s12035-016-0007-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/05/2016] [Indexed: 02/05/2023]
Abstract
Based on the observation that microRNA (miRNA) 133b enhances regeneration after spinal cord injury in the adult zebrafish, we investigated whether this miRNA would be beneficial in a mammalian system in vitro and in vivo. We found that infection of cultured neurons with miR-133b promotes neurite outgrowth in vitro on an inhibitory substrate consisting of mixed chondroitin sulfate proteoglycans, when compared to infection with green fluorescent protein (GFP) for control. In vivo, viral infection of the injured adult mouse spinal cord at the time of injury at and in the vicinity of the lesion site enhanced expression of miR-133b. Measurements of locomotor recovery by Basso Mouse Scale (BMS) showed improvement of recovery starting at 4 weeks after injury and virus injection. This improvement was associated with downregulation of the expression levels of Ras homolog gene family member A (RhoA), chondroitin sulfate proteoglycans, and microglia/macrophage marker in the spinal cord as assayed 6 weeks after injury. Potential inhibitory molecules carrying consensus sequences for binding of miR-133b were identified in silico and verified in a reporter assay in vitro showing reductions in expression of RhoA, xylosyltransferase 1 (Xylt1), ephrin receptor A7 (Epha7), and purinergic receptor P2X ligand-gated ion channel 4 (P2RX4). These results encourage targeting miR-133 for therapy.
Collapse
Affiliation(s)
- Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Myung Yoo
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Christopher S Park
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Jian Chen
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain, University Medicine, Göttingen, Germany
| | - Kurt M Gibbs
- Morehead State University, Morehead, KY, 40351, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA.
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
27
|
The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues. Stem Cells Int 2017; 2017:1960804. [PMID: 28458693 PMCID: PMC5387841 DOI: 10.1155/2017/1960804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+) cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.
Collapse
|
28
|
Shehata AS, Al-Ghonemy NM, Ahmed SM, Mohamed SR. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. Int J Biochem Cell Biol 2017; 85:135-148. [PMID: 28232107 DOI: 10.1016/j.biocel.2017.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.
Collapse
Affiliation(s)
| | | | - Samah M Ahmed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
29
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
30
|
Willett NJ, Krishnan L, Li MTA, Guldberg RE, Warren GL. Guidelines for Models of Skeletal Muscle Injury and Therapeutic Assessment. Cells Tissues Organs 2016; 202:214-226. [PMID: 27825151 DOI: 10.1159/000445345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Volumetric muscle loss (VML) injuries present a large clinical challenge with a significant need for new interventions. While there have been numerous reviews on muscle injury models, few have critically evaluated VML models. The objective of this review is to discuss current preclinical models of VML in terms of models, analytical outcomes, and therapeutic interventions, and to provide guidelines for the future use of preclinical VML models. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.
Collapse
|
31
|
Helal MAM, Shaheen NEM, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol Immunotoxicol 2016; 38:414-422. [PMID: 27560658 DOI: 10.1080/08923973.2016.1222617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Cell therapy technique with stem cells is a very attractive strategy for the treatment of muscle disorders. OBJECTIVE The objective of this study was to investigate the mechanism of local transplantation of mesenchymal stem cells (MSCs) which could contribute to skeletal muscle healing. MATERIALS AND METHODS Female rats were divided into three equal groups as the following: group 1, the negative control group (untreated group), group 2, sham-treated group, rats with muscle injuries involving volumetric muscle loss (VML) of adductor brevis muscle and injected locally with phosphate-buffered saline (PBS) 0.5 ml without stem cells after 7 d of muscle injury, group 3, treated group, rats with VML and injected locally (intramuscular) with 1.5 × 106 bone marrow MSCs suspended in PBS 0.5 ml (1) after 7 d of muscle tissue injury. All animals were sacrificed after 4 weeks of stem cell transplantation. RESULTS In vitro culture the morphology of MSCs reached confluence and appeared as long spindle in shape on 9-14 d. Most of the cells did not express the hematopoietic cell marker, CD34 and CD45 but expressed MSCs marker CD44, CD90 and CD105. The remarkable increase of proliferating cell nuclear antigen positive nucleus was recorded in MSCs group as compared to PBS group. After 28 d of injection, administration of only PBS into the site of muscle injury caused up-regulation in the levels of interleukins IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β1), interferon alpha (IFN-α) and down-regulate the level of IL-10 in muscular tissue comparing to the untreated control. Bone marrow MSCs + PBS injected at the site of muscle injury significantly down-regulate the inflammatory cytokines levels IL-1β and IL-6 and TNF-α, TGF-β1 and IFN-α and up-regulate the level of IL-10. Collagen concentrations in the injured skeletal muscle estimated by enzyme-linked immuno sorbent assay and stained with Masson trichrome stain were increased with PBS group and decreased after transplantation of bone marrow MSCs in the site of injury. Muscle sections stained with H&E showed a higher number of centronucleated regenerating myofibers in the stem-cell-treated group than in the (PBS) and untreated control group. Microvasculature of skeletal muscle was decreased as demonstrated by immunostaining technique for CD34 in PBS group from untreated control. The MSCs group showed angiogenesis and marked increase of skeletal muscle microvasculature than PBS group. CONCLUSION MSCs can modify the local immunological responses and improve muscle regeneration by suppressing of inflammatory cytokines, activating of the anti-inflammatory cytokine, restoration of muscle fibers and angiogenesis. By means of increase in TGF-β production in response to muscle injury prevent the repair of injured fibers and increase connective tissue production (collagen fibers), thus propagating skeletal muscle weakness and fibrosis whereas MSCs + PBS injected at the site of muscle injury significantly down-regulate (TGF-β1) and hence the level of collagen (fibrosis or scar areas). MSCs are able to block the fibrotic signaling cascade by declining TGF-β1 and scar areas in the injured muscle.
Collapse
Affiliation(s)
- Mona A M Helal
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Noura E M Shaheen
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Fatma A Abu Zahra
- b Molecular Biology and Tissue Culture , Medical Research Center, Ain Shams University , Cairo , Egypt
| |
Collapse
|
32
|
Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell 2016; 48:533-43. [PMID: 27457384 DOI: 10.1016/j.tice.2016.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 12/26/2022]
Abstract
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sun-Mi Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
33
|
Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim IS, Cho YW. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release 2015; 222:107-15. [PMID: 26699421 DOI: 10.1016/j.jconrel.2015.12.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/03/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA). Interestingly, exosome-treated HASCs fused with neighboring cells at early time points and exhibited a myotube-like phenotype with increased expression of myogenic proteins (myosin heavy chain and desmin). On day 21, mRNAs of terminal myogenic genes were also up-regulated in exosome-treated HASCs. Moreover, in vivo studies demonstrated that exosomes from differentiating HSkM reduced the fibrotic area and increased the number of regenerated myofibers in the injury site, resulting in significant improvement of skeletal muscle regeneration. Our findings suggest that exosomes act as a biochemical cue directing stem cell differentiation and provide a cell-free therapeutic approach for muscle regeneration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Hwa In Yoon
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Kyoung Soo Lee
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Seong Hyun Yang
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea; KU-KIST School, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea.
| |
Collapse
|
34
|
Eljaszewicz A, Sienkiewicz D, Grubczak K, Okurowska-Zawada B, Paszko-Patej G, Miklasz P, Singh P, Radzikowska U, Kulak W, Moniuszko M. Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies. Stem Cells Int 2015; 2016:2650849. [PMID: 26770204 PMCID: PMC4684893 DOI: 10.1155/2016/2650849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023] Open
Abstract
Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients.
Collapse
Affiliation(s)
- Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Dorota Sienkiewicz
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Bożena Okurowska-Zawada
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Grażyna Paszko-Patej
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Paula Miklasz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paulina Singh
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Urszula Radzikowska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wojciech Kulak
- Department of Pediatric Rehabilitation and Center of Early Support for Handicapped Children “Give a Chance”, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
35
|
Kang HS, Choi SH, Kim BS, Choi JY, Park GB, Kwon TG, Chun SY. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation. J Korean Med Sci 2015; 30:1764-76. [PMID: 26713051 PMCID: PMC4689820 DOI: 10.3346/jkms.2015.30.12.1764] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs.
Collapse
Affiliation(s)
- Hye Suk Kang
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seock Hwan Choi
- Department of Urology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Bum Soo Kim
- Department of Urology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Young Choi
- Department of Urology, Yeungnam University College of Medicine, Daegu, Korea
| | - Gang-Baek Park
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University School of Medicine, Daegu, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
36
|
Negroni E, Gidaro T, Bigot A, Butler-Browne GS, Mouly V, Trollet C. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41:270-87. [PMID: 25405809 DOI: 10.1111/nan.12198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.
Collapse
Affiliation(s)
- Elisa Negroni
- Institut de Myologie, CNRS FRE3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, 47 bd de l'Hôpital, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
37
|
Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:673651. [PMID: 26090433 PMCID: PMC4450286 DOI: 10.1155/2015/673651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/25/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs). Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%), efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40 ± 1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events.
Collapse
|
38
|
Amano H, Ito Y, Eshima K, Kato S, Ogawa F, Hosono K, Oba K, Tamaki H, Sakagami H, Shibuya M, Narumiya S, Majima M. Thromboxane A2induces blood flow recovery via platelet adhesion to ischaemic regions. Cardiovasc Res 2015; 107:509-21. [DOI: 10.1093/cvr/cvv139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/26/2015] [Indexed: 11/14/2022] Open
|
39
|
Abstract
Lymphedema is a medically irreversible condition for which currently conservative and surgical therapies are either ineffective or impractical. The potential use of progenitor and stem cell-based therapies has offered a paradigm that may provide alternative treatment options for lymphatic disorders. Moreover, basic research, preclinical studies, as well as clinical trials have evaluated the therapeutic potential of various cell therapies in the field of lymphatic regeneration medicine. Among the available cell approaches, mesenchymal stem cells (MSCs) seem to be the most promising candidate mainly due to their abundant sources and easy availability as well as evitable ethical and immunological issues confronted with embryonic stem cells and induced pluripotent stem cells. In this context, the purpose of this review is to summarize various cell-based therapies for lymphedema, along with strengths and weaknesses of these therapies in the clinical application for lymphedema treatment. Particularly, we will highlight the use of MSCs for lymphatic regeneration medicine. In addition, the future perspectives of MSCs in the field of lymphatic regeneration will be discussed.
Collapse
Affiliation(s)
- Shuqun Qi
- 1 State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University , Chengdu, China
| | | |
Collapse
|
40
|
Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model. J Orthop Sci 2014; 19:478-88. [PMID: 24562652 DOI: 10.1007/s00776-014-0548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND A magnetic cell targeting system was previously developed to promote the accumulation of transplanted cells in sites of injury in order to effectively treat injured tissues. However, the optimum time of exposure to the magnetic field and the strength of the magnetic force have not yet been clarified. In this study, we investigated the optimum conditions of the magnetic force required to retain iron-labeled human mesenchymal stem cells (hMSCs) at the site of transplantation for muscle repair in a subchronic skeletal muscle injury nude rat model. METHODS First, the optimum strength and time of exposure to the magnetic force for cell retention at the transplantation site were investigated 2 days after cell transplantation (1 × 10(5) cells). Second, the degree of enhancement of muscle repair was investigated at 3 weeks after cell transplantation in the group treated without a magnetic force and two typical magnetic condition groups that exhibited different levels of cell integration in first part of the study. RESULTS On the basis of the results of the first investigation, it was concluded that a magnetic strength of 1.5 T and 10 min of exposure to the magnetic force were efficient conditions to induce the retention of transplanted cells at the site of transplantation. In the second study, the groups exposed to a 1.5-T magnetic field for 10 min demonstrated significant enhancement of muscle repair, both histologically and electromechanically. CONCLUSIONS This study identified the optimal conditions required to retain transplanted hMSCs at the site of transplantation using a magnetic targeting system. This study also showed that the restoration of subchronic muscle injuries can be enhanced by magnetically labeled hMSCs following the application of a magnetic force.
Collapse
|
41
|
Marques LF, Stessuk T, Camargo ICC, Sabeh Junior N, Santos LD, Ribeiro-Paes JT. Platelet-rich plasma (PRP): Methodological aspects and clinical applications. Platelets 2014; 26:101-13. [DOI: 10.3109/09537104.2014.881991] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Abstract
Cells, scaffold, and growth factors are crucially important in regenerative medicine and tissue engineering. Progress in science and technology has enabled development of these three factors, with basic research being applied clinically. In the past decade, we have investigated tissue regeneration in animal models of musculoskeletal disorders by using cells, scaffold, and delivery systems which has been relatively easy to apply and develop in clinical settings. Moreover, microRNA (miRNA), which are important in biological processes and in the pathogenesis of human diseases, have been used in research on regenerative medicine. For the cell source, we focused on mesenchymal stem cells (MSC) and CD34(+) and CD133(+) cells as endothelial progenitor cells for regeneration of musculoskeletal organs. These cells are accessible and safe. For less invasive and more effective therapy, we developed a novel cell-delivery system using magnetic force to accumulate cells at a desired site. Furthermore, administration of synthetic miRNA could enhance tissue regeneration. In our studies, use of these cells combined with a cell-delivery system, miRNA, scaffold, and cytokines has led to effective regeneration of musculoskeletal tissues including cartilage, bone, ligaments, muscle, peripheral nerves, and spinal cord. The current and future objective is more effective and less invasive cell-based therapy with spatial control of transplanted cells by use of an external magnetic force. Analysis of efficiency, safety, and the mechanism of tissue regeneration by cells, scaffold, and miRNA will lead to more promising regenerative medicine, involving the development of a new generation of therapy. This review will focus on our regenerative medicine research, which focuses on clinical application of cells, scaffold, and miRNA.
Collapse
|
43
|
Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013; 14:1062-72. [PMID: 24232182 DOI: 10.1038/embor.2013.182] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.
Collapse
|
44
|
Turner NJ, Keane TJ, Badylak SF. Lessons from developmental biology for regenerative medicine. ACTA ACUST UNITED AC 2013; 99:149-59. [DOI: 10.1002/bdrc.21040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Surgery, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
45
|
Ohkawa S, Kamei N, Kamei G, Shi M, Adachi N, Deie M, Ochi M. Magnetic targeting of human peripheral blood CD133+ cells for skeletal muscle regeneration. Tissue Eng Part C Methods 2013; 19:631-41. [PMID: 23298291 PMCID: PMC3689931 DOI: 10.1089/ten.tec.2012.0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/14/2012] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle injuries often leave lasting functional damage or pain. Muscle injuries are routinely treated conservatively, but the most effective treatment to promote the repair of injured muscles has not yet been established. Our previous report demonstrated that human peripheral blood-derived CD133(+) cell transplantation to rat skeletal muscle injury models inhibited fibrosis and enhanced myogenesis after injury. However, the acquisition of a sufficient number of cells remains the limitation for clinical application, as the CD133(+) population is rare in human blood. In this study, we applied a magnetic cell targeting system to accumulate transplanted cells in the muscle injury site and to enhance the regenerative effects of CD133(+) cell transplantation, focusing on the fact that CD133(+) cells are labeled with a magnetic bead for isolation. For the magnetic cell targeting, the magnet field generator was set up to adjust the peak of the magnetic gradient to the injury site of the tibialis anterior muscle, and 1×10(4) human peripheral blood CD133(+) cells were locally injected into the injury site. This cell number is 10% of that used in the previous study. In another group, the same number of CD133(+) cells was injected without magnetic force. The CD133(+) cells transplanted with the magnetic force were more accumulated in the muscle injury site compared with the CD133(+) cells transplanted without the magnetic force. In addition, the transplantation of CD133(+) cells under the magnetic control inhibited fibrous scar formation and promoted angiogenesis and myogenesis, and also upregulated the mRNA expression of myogenic transcription factors, including Pax7, MyoD1 and Myogenin. However, the transplantation of CD133(+) cells without the magnetic force failed to demonstrate these effects. Thus, our magnetic cell targeting system enables transplantation of a limited number of CD133(+) cells to promote the repair of skeletal muscle injury.
Collapse
Affiliation(s)
- Shingo Ohkawa
- Programs for Applied Biomedicine, Division of Clinical Medical Science, Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 2013; 34:6037-45. [PMID: 23688603 DOI: 10.1016/j.biomaterials.2013.04.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle regeneration after sport injury is inconsistent, and complete healing without fibrosis is very important. In this study, we determined whether the combination therapy using human adipose-derived stem cells (h-ADSCs) and basic fibroblast growth factor (bFGF) incorporated into hydrogel could enhance muscle regeneration in a muscle laceration animal model. The h-ADSCs and/or bFGF hydrogels were applied to the lacerated gastrocnemius muscle. Fast twitch muscle contraction improved significantly and fibrosis decreased significantly in combined h-ADSC and bFGF-hydrogel group compared to other experimental groups. Skeletal muscle differentiation of h-ADSCs was determined by immunohistochemistry (PKH-26/MyHC co-staining) and Western blot. Our data suggested that combination therapy of h-ADSCs and bFGF hydrogel resulted in functional recovery, revascularization and reinnervation with minimal fibrosis in lacerated muscle. A combination of h-ADSCs and bFGF hydrogel can be used as a promising therapy for skeletal muscle regeneration.
Collapse
|
47
|
Nakabayashi A, Kamei N, Sunagawa T, Suzuki O, Ohkawa S, Kodama A, Kamei G, Ochi M. In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model. J Orthop Res 2013. [PMID: 23192745 DOI: 10.1002/jor.22282] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to clarify the kinetics of transplanted mesenchymal stem cells (MSCs) in rat skeletal muscle injury model and the contribution of the magnetic cell delivery system to muscle injury repair. A magnetic field generator was used to apply an external magnetic force to the injury site of the tibia anterior muscle, and 1 × 10(6) MSCs labeled with ferucarbotran-protamine complexes, which were isolated from luciferase transgenic rats, were injected into the injury site. MSCs were injected with and without an external magnetic force (MSC M+ and MSC M- groups, respectively), and phosphate-buffered saline was injected into injury sites as a control. In vivo bioluminescence imaging was performed immediately after the transplantation and, at 12, 24, and 72 h, and 1 and 4 weeks post-transplantation. Also, muscle regeneration and function were histologically and electromechanically evaluated. In vivo bioluminescence imaging showed that the photon of the MSC M+ group was significantly higher than that of the MSC M- group throughout the observation period. In addition, muscle regeneration and function in the MSC M+ group was histologically and functionally better than that of the MSC M- group. The results of our study indicated that magnetic cell delivery system may be of use in directing the transplanted MSCs to the injury site to promote skeletal muscle regeneration.
Collapse
Affiliation(s)
- Akihiro Nakabayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minaki-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Corona BT, Wu X, Ward CL, McDaniel JS, Rathbone CR, Walters TJ. The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials 2013; 34:3324-35. [DOI: 10.1016/j.biomaterials.2013.01.061] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
49
|
Mori R, Kamei N, Okawa S, Nakabayashi A, Yokota K, Higashi Y, Ochi M. Promotion of skeletal muscle repair in a rat skeletal muscle injury model by local injection of human adipose tissue-derived regenerative cells. J Tissue Eng Regen Med 2012; 9:1150-60. [PMID: 23239611 DOI: 10.1002/term.1659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/07/2012] [Accepted: 10/21/2012] [Indexed: 01/09/2023]
Abstract
Human adipose tissue-derived regenerative cells (ADRCs) can be isolated easily and aseptically from unwanted subcutaneous fat without culturing. ADRCs have been used in clinical cosmetic therapy. In addition, they are expected to be an attractive and feasible source of cell-based therapies in regenerative medicine. Therefore, this paper investigates whether transplantation of human adult ADRCs into skeletal muscle injury models promotes the repair of muscle tissues. This was done by locally injecting human ADRCs into an injured site after laceration of the nude-rat tibialis anterior muscle. Phosphate-buffered saline (PBS) and bone marrow mononuclear cells (MNCs) were injected as negative and positive controls, respectively. After injury, recovery of muscle strength was accelerated by transplantation of ADRCs compared to administration of PBS and MNCs. Moreover, transplantation of ADRCs also enhanced angiogenesis and myogenesis, but the number of vascular and muscular cells labeled with the human cell-specific maker was limited at the injury site. Results showed that transplantation of ADRCs into a skeletal muscle injury model promoted repair of muscle tissues in a paracrine manner rather than differentiation of itself into blood vessels and myofibres. Thus, it is believed that ADRCs are a useful and feasible cell source not only for cosmetic therapy but also for regenerative therapy.
Collapse
Affiliation(s)
- Ryo Mori
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Naosuke Kamei
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan.,Division of Regeneration and Medicine, Hiroshima University Hospital, Japan
| | - Shingo Okawa
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Akihiro Nakabayashi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Kazunori Yokota
- Department of Plastic and Reconstructive Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Hiroshima University Hospital, Japan
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| |
Collapse
|
50
|
Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwińska AM, Czarnecka-Góra M, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 2012; 104:722-37. [PMID: 22978573 DOI: 10.1111/boc.201200022] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/11/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND INFORMATION The regeneration of skeletal muscles involves satellite cells, which are muscle-specific precursor cells. In muscles, injured either mechanically or as a consequence of a disease, such as muscular dystrophy, local release of the growth factors and cytokines leads to satellite cells activation, proliferation and differentiation of the resulting myoblasts, followed by the formation of new myofibres. Various cell types, such as stem and progenitor cells, originating from other tissues different than the muscle, are also able to follow a myogenic program. Participation of these cells in the repair process depends on their precise mobilisation to the site of the injury. RESULTS In this study, we showed that stromal-derived factor-1 (Sdf-1) impacts on the mobilisation of CXC chemokine receptor (Cxcr)4-positive cells and improves skeletal muscle regeneration. Analysis of isolated and in vitro cultured satellite cells showed that Sdf-1 did not influence myoblasts proliferation and expression of myogenic regulatory transcription factors but induced migration of the myoblasts in Cxcr4-dependent ways. This phenomenon was also associated with the increased activity of crucial extracellular matrix modifiers, i.e. metalloproteases Mmp-2 and Mmp-9. CONCLUSIONS Thus, positive impact of Sdf-1 on muscle regeneration is related to the mobilisation of endogenous cells, that is satellite cells and myoblasts, as well as non-muscle stem cells, expressing Cxcr4 and CD34.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|