1
|
Wu C, Hong SG, Bonifacino A, Dunbar CE. Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:63-84. [PMID: 36255695 DOI: 10.1007/978-1-0716-2679-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Abstract
The earliest conceptual history of gene therapy began with the recognition of DNA as the transforming substance capable of changing the phenotypic character of a bacterium and then as the carrier of the genomic code. Early studies of oncogenic viruses that could insert into the mammalian genome led to the concept that these same viruses might be engineered to carry new genetic material into mammalian cells, including human hematopoietic stem cells (HSC). In addition to properly engineered vectors capable of efficient safe transduction of HSC, successful gene therapy required the development of efficient materials, methods, and equipment to procure, purify, and culture HSC. Increased understanding of the preparative conditioning of patients was needed to optimize the engraftment of genetically modified HSC. Testing concepts in pivotal clinical trials to assess the efficacy and determine the cause of adverse events has advanced the efficiency and safety of gene therapy. This article is a historical overview of the separate threads of discovery that joined together to comprise our current state of gene therapy targeting HSC.
Collapse
|
3
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 2020; 474:73-81. [DOI: 10.1007/s11010-020-03834-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
5
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
6
|
El Moshy S, Radwan IA, Rady D, Abbass MMS, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM. Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications. Stem Cells Int 2020; 2020:7593402. [PMID: 32089709 PMCID: PMC7013327 DOI: 10.1155/2020/7593402] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating different tissue' diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of these recent studies clearly indicate that dental MSCs' secretome/conditioned medium could be effective in treating neural injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus, hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and neurogenic mediators.
Collapse
Affiliation(s)
- Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Aiah A. El-Rashidy
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Khadiga M. Sadek
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Aramburú Junior JS, Eilers Treichel TL, Lemos Pinto Filho ST, Gehrke SA, Machado AK, Cadoná FC, Mânica da Cruz IB, Pippi NL. DNA damage in dental pulp mesenchymal stem cells: An in vitro study. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:293-299. [PMID: 30713606 PMCID: PMC6346493 DOI: 10.30466/vrf.2018.33083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the potential use of a DNA comet assay, DNA fragmentation fluorimetric assay and reactive oxygen species levels as potential biomarkers of genome conditions of dental pulp stem cells (DPSCs) isolated from dog canine teeth. Mesenchymal stem cells were isolated from the dental pulp collected from dog teeth. The results obtained suggest the ideal moment for clinical application of cellular therapy for this type of cell. The cell culture was maintained with Dulbecco’s modified Eagle’s medium supplemented with 10.00% fetal bovine serum for eight passages. During each passage, cell proliferation, oxidative stress and level of DNA fragmentation were assessed by3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium (MTT) assay, testing 2,7 dichlorodihydro-fluorescein-diacetate and PicoGreen®, respectively. There were important differences among the first three DPSC passages compared to passages 4–8 and a large number of nuclei with some levels of DNA damage (30.00 to 40.00% in initial DPSC passages and > 50.00% in late passages), indicating in vitro DPSC genomic fragility. Within the limitations of this study, the results suggest these relatively simple and inexpensive approaches - comet and DNA fragmentation assays - could help sort stem cells with less DNA damage for use in research or therapies.
Collapse
Affiliation(s)
- Jaime Sardá Aramburú Junior
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil.,Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | - Sergio Alexandre Gehrke
- Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | | | - Ney Luis Pippi
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
8
|
Getting the Most: Enhancing Efficacy by Promoting Erythropoiesis and Thrombopoiesis after Gene Therapy in Mice with Hurler Syndrome. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:52-64. [PMID: 30397627 PMCID: PMC6205327 DOI: 10.1016/j.omtm.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Novel strategies are needed to solve the conundrum of achieving clinical efficacy with high vector copy numbers (VCNs) in hematopoietic stem cells (HSCs) while attempting to minimize the potential risk of oncogenesis in lentiviral vector (LV)-mediated gene therapy clinical trials. We previously reported the benefits of reprogramming erythroid-megakaryocytic (EMK) cells for high-level lysosomal enzyme production with less risk of activating oncogenes in HSCs. Herein, using a murine model of mucopolysaccharidosis type I (MPS I) with a deficiency of α-L-iduronidase (IDUA), we sought to determine the transgene minimum effective doses (MEDs) in major organs, and if a transient increase of IDUA-containing red blood cells and platelets by repeated phlebotomy would provide further therapeutic benefits in diseased mice after EMK-restricted LV-mediated gene therapy. The MEDs for complete metabolic correction ranged from 0.1 to 2 VCNs in major visceral organs, which were dramatically reduced to 0.005–0.1 VCN by one cycle of stress induction and were associated with a further reduction of pathological deficits in mice with 0.005 VCN. This work provides a proof of concept that transiently stimulating erythropoiesis and thrombopoiesis can further improve therapeutic benefits in HSC-mediated gene therapy for MPS I, a repeatable and reversible approach to enhance clinical efficacy in the treatment of lysosomal storage diseases.
Collapse
|
9
|
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359:359/6372/eaan4672. [DOI: 10.1126/science.aan4672] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After almost 30 years of promise tempered by setbacks, gene therapies are rapidly becoming a critical component of the therapeutic armamentarium for a variety of inherited and acquired human diseases. Gene therapies for inherited immune disorders, hemophilia, eye and neurodegenerative disorders, and lymphoid cancers recently progressed to approved drug status in the United States and Europe, or are anticipated to receive approval in the near future. In this Review, we discuss milestones in the development of gene therapies, focusing on direct in vivo administration of viral vectors and adoptive transfer of genetically engineered T cells or hematopoietic stem cells. We also discuss emerging genome editing technologies that should further advance the scope and efficacy of gene therapy approaches.
Collapse
|
10
|
Ren N, Atyah M, Chen WY, Zhou CH. The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med 2017; 15:110. [PMID: 28532423 PMCID: PMC5440915 DOI: 10.1186/s12967-017-1218-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Genotoxicity refers to the ability of harmful substances to damage genetic information in cells. Being exposed to chemical and biological agents can result in genomic instabilities and/or epigenetic alterations, which translate into a variety of diseases, cancer included. This concise review discusses, from both a genetic and epigenetic point of view, the current detection methods of different agents’ genotoxicity, along with their basic and clinical relation to human cancer, chemotherapy, germ cells and stem cells.
Collapse
Affiliation(s)
- Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Manar Atyah
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Wan-Yong Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Chen-Hao Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| |
Collapse
|
11
|
Thrasher AJ, Williams DA. Evolving Gene Therapy in Primary Immunodeficiency. Mol Ther 2017; 25:1132-1141. [PMID: 28366768 DOI: 10.1016/j.ymthe.2017.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - David A Williams
- Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I, Hacein-Bey-Abina S. Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand? Hum Gene Ther 2016; 27:108-16. [PMID: 26790362 DOI: 10.1089/hum.2015.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 20 years ago, X-linked severe combined immunodeficiency (SCID-X1) appeared to be the best condition to test the feasibility of hematopoietic stem cell gene therapy. The seminal SCID-X1 clinical studies, based on first-generation gammaretroviral vectors, demonstrated good long-term immune reconstitution in most treated patients despite the occurrence of vector-related leukemia in a few of them. This gene therapy has successfully enabled correction of the T cell defect. Natural killer and B cell defects were only partially restored, most likely due to the absence of a conditioning regimen. The success of these pioneering trials paved the way for the extension of gene-based treatment to many other diseases of the hematopoietic system, but the unfortunate serious adverse events led to extensive investigations to define the retrovirus integration profiles. This review puts into perspective the clinical experience of gene therapy for SCID-X1, with the development and implementation of new generations of safer vectors such as self-inactivating gammaretroviral or lentiviral vectors as well as major advances in integrome knowledge.
Collapse
Affiliation(s)
- Marina Cavazzana
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Emmanuelle Six
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Chantal Lagresle-Peyrou
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Isabelle André-Schmutz
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Salima Hacein-Bey-Abina
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,5 UTCBS CNRS 8258-INSERM U1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes , Paris.,6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , AP-HP, Le-Kremlin-Bicêtre, France
| |
Collapse
|
13
|
|
14
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
15
|
Naldini L. Gene therapy returns to centre stage. Nature 2016; 526:351-60. [PMID: 26469046 DOI: 10.1038/nature15818] [Citation(s) in RCA: 834] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
Recent clinical trials of gene therapy have shown remarkable therapeutic benefits and an excellent safety record. They provide evidence for the long-sought promise of gene therapy to deliver 'cures' for some otherwise terminal or severely disabling conditions. Behind these advances lie improved vector designs that enable the safe delivery of therapeutic genes to specific cells. Technologies for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
16
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
17
|
Barese CN, Felizardo TC, Sellers SE, Keyvanfar K, Di Stasi A, Metzger ME, Krouse AE, Donahue RE, Spencer DM, Dunbar CE. Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques. Stem Cells 2015; 33:91-100. [PMID: 25330775 DOI: 10.1002/stem.1869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
The high risk of insertional oncogenesis reported in clinical trials using integrating retroviral vectors to genetically modify hematopoietic stem and progenitor cells (HSPCs) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of "suicide genes" in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the "inducible Caspase-9" (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75% and 94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches using iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development.
Collapse
Affiliation(s)
- Cecilia N Barese
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
19
|
Liu M, Maurano MT, Wang H, Qi H, Song CZ, Navas PA, Emery DW, Stamatoyannopoulos JA, Stamatoyannopoulos G. Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 2015; 33:198-203. [PMID: 25580597 DOI: 10.1038/nbt.3062] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.
Collapse
Affiliation(s)
- Mingdong Liu
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Matthew T Maurano
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Heyuan Qi
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Zhong Song
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Patrick A Navas
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - David W Emery
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - John A Stamatoyannopoulos
- 1] Department of Genome Sciences, University of Washington, Seattle, Washington, USA. [2] Department of Medicine, University of Washington, Seattle, Washington, USA
| | - George Stamatoyannopoulos
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e200. [PMID: 25291142 PMCID: PMC4217076 DOI: 10.1038/mtna.2014.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022]
Abstract
Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC) based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG) mice after transduction with an LTR-driven gammaretroviral vector (GV). Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.
Collapse
|
21
|
El-Amouri SS, Dai M, Han JF, Brady RO, Pan D. Normalization and improvement of CNS deficits in mice with Hurler syndrome after long-term peripheral delivery of BBB-targeted iduronidase. Mol Ther 2014; 22:2028-2037. [PMID: 25088464 DOI: 10.1038/mt.2014.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disorder with systemic and central nervous system (CNS) involvement due to deficiency of α-L-iduronidase (IDUA). We previously identified a receptor-binding peptide from apolipoprotein E (e) that facilitated a widespread delivery of IDUAe fusion protein into CNS. In this study, we evaluated the long-term CNS biodistribution, dose-correlation, and therapeutic benefits of IDUAe after systemic, sustained delivery via hematopoietic stem cell (HSC)-mediated gene therapy with expression restricted to erythroid/megakaryocyte lineages. Compared to the highest dosage group treated by nontargeted control IDUAc (165 U/ml), physiological levels of IDUAe in the circulation (12 U/ml) led to better CNS benefits in MPS I mice as demonstrated in glycosaminoglycan accumulation, histopathology analysis, and neurological behavior. Long-term brain metabolic correction and normalization of exploratory behavior deficits in MPS I mice were observed by peripheral enzyme therapy with physiological levels of IDUAe derived from clinically attainable levels of HSC transduction efficiency (0.1). Importantly, these levels of IDUAe proved to be more beneficial on correction of cerebrum pathology and behavioral deficits in MPS I mice than wild-type HSCs fully engrafted in MPS I chimeras. These results provide compelling evidence for CNS efficacy of IDUAe and its prospective translation to clinical application.
Collapse
Affiliation(s)
- Salim S El-Amouri
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mei Dai
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jing-Fen Han
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Roscoe O Brady
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dao Pan
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
22
|
Guo D, Ma J, Su W, Xie B, Guo C. Contribution of reactive oxygen species (ROS) to genotoxicity of nitrobenzene on V. faba. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:657-664. [PMID: 24676937 DOI: 10.1007/s10646-014-1230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Nitrobenzene is an important organic intermediate widely used in industry that can be hazardous to the environment. In our previous study, nitrobenzene showed genotoxic effect on soybean and tobacco plants at concentrations in the culture medium higher than 10 mg/L. The genotoxicity of nitrobenzene has been hypothesized to be multifactorial and reflective of the generation of free radicals; however, the mechanism has not been fully elucidated. The aim of this study was to investigate the relationship between the induction of genotoxicity and the production of free radicals in young seedlings of V. faba exposed to nitrobenzene, nitrobenzene + Vitamin C, and the controls (distilled water or Vitamin C). Micronucleus and chromosome aberration assays performed on root and leaf tissue of V. faba seedlings exposed to nitrobenzene (25 mg/L) demonstrated genotoxic effects which were partly reduced by Vitamin C at 25 mg/L. Increases in lipid peroxidase, O2•-, H2O2, superoxide dismutase and catalase activities were also observed in these tissues along with an attenuation of their induction by Vitamin C. Concomitant occurrence of genotoxicity and the generation of free radicals that are attenuated in the presence of Vitamin C, a scavenger of cellular free radicals, indicate that reactive oxygen species may contributes to genotoxicity of nitrobenzene in V. faba. These results are valuable for further understanding the genotoxicity mechanism of nitrobenzene.
Collapse
Affiliation(s)
- Donglin Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|
23
|
Abstract
Ischemic cardiac disease is the leading cause of death in the developed world. The inability of the adult mammalian heart to adequately repair itself has motivated stem cell researchers to explore various strategies to regenerate cardiomyocytes after myocardial infarction. Over the past century, progressive gains in our knowledge about the cellular mechanisms governing fate determination have led to recent advances in cellular reprogramming. The identification of specific factors capable of inducing pluripotent phenotype in somatic cells as well as factors that can directly reprogram somatic cells into cardiomyocytes suggests the potential for these approaches to translate into clinical therapies in the future. Although conceptually appealing, the field of cell lineage reprogramming is in its infancy, and further research will be needed to improve the efficiency of the reprogramming process and the fidelity of the reprogrammed cells to their in vivo counterpart.
Collapse
Affiliation(s)
| | | | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Platelets are efficient and protective depots for storage, distribution, and delivery of lysosomal enzyme in mice with Hurler syndrome. Proc Natl Acad Sci U S A 2014; 111:2680-5. [PMID: 24550296 DOI: 10.1073/pnas.1323155111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of megakaryocytes/platelets for transgene expression may take advantage of their rapid turnover and protective storage in platelets and reduce the risk of activating oncogenes in hematopoietic stem and progenitor cells (HSCs). Here, we show that human megakaryocytic cells could overexpress the lysosomal enzyme, α-l-iduronidase (IDUA), which is deficient in patients with mucopolysaccharidosis type I (MPS I). Upon megakaryocytic differentiation, the amount of released enzyme increased rapidly and steadily by 30-fold. Using a murine MPS I model, we demonstrated that megakaryocyte/platelets were capable of producing, packaging, and storing large amounts of IDUA with proper catalytic activity, lysosomal trafficking, and receptor-mediated uptake. IDUA can be released directly into extracellular space or within microparticles during megakaryocyte maturation or platelet activation, while retaining the capacity for cross-correction in patient's cells. Gene transfer into 1.7% of HSCs led to long-term normalization of plasma IDUA and preferential distribution of enzyme in liver and spleen with complete metabolic correction in MPS I mice. Detection of GFP (coexpressed with IDUA) in Kupffer cells and hepatocytes suggested liver delivery of platelet-derived IDUA possibly via the clearance pathway for senile platelets. These findings provide proof of concept that cells from megakaryocytic lineage and platelets are capable of generating and storing fully functional lysosomal enzymes and can also lead to efficient delivery of both the enzymes released into the circulation and those protected within platelets/microparticles. This study opens a door for use of the megakaryocytes/platelets as a depot for efficient production, delivery, and effective tissue distribution of lysosomal enzymes.
Collapse
|
25
|
Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of "factor-free" induced pluripotent stem cells. Mol Ther 2014; 22:919-28. [PMID: 24434935 DOI: 10.1038/mt.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.
Collapse
|
26
|
Stein S, Scholz S, Schwäble J, Sadat MA, Modlich U, Schultze-Strasser S, Diaz M, Chen-Wichmann L, Müller-Kuller U, Brendel C, Fronza R, Kaufmann KB, Naundorf S, Pech NK, Travers JB, Matute JD, Presson RG, Sandusky GE, Kunkel H, Rudolf E, Dillmann A, von Kalle C, Kühlcke K, Baum C, Schambach A, Dinauer MC, Schmidt M, Grez M. From bench to bedside: preclinical evaluation of a self-inactivating gammaretroviral vector for the gene therapy of X-linked chronic granulomatous disease. HUM GENE THER CL DEV 2013; 24:86-98. [PMID: 23845071 DOI: 10.1089/humc.2013.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.
Collapse
Affiliation(s)
- Stefan Stein
- Institute for Biomedical Research, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liang Y, Ågren L, Lyczek A, Walczak P, Bulte JW. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control. Exp Neurol 2013; 247:73-9. [PMID: 23570903 PMCID: PMC3742733 DOI: 10.1016/j.expneurol.2013.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 01/08/2023]
Abstract
Cell-based therapy of neurological disorders is hampered by poor survival of grafted neural progenitor cells (NPCs). We hypothesized that it is possible to enhance the survival of human NPCs (ReNcells) by co-transplantation of helper cells expressing basic fibroblast growth factor (bFGF) under control of doxycycline (Dox). 293 cells or C17.2 cells were transduced with a lentiviral vector encoding the fluorescent reporter mCherry and bFGF under tetracycline-regulated transgene expression (Tet-ON). The bFGF secretion level in the engineered helper cells was positively correlated with the dose of Dox (Pearson correlation test; r=0.95 and 0.99 for 293 and C17.2 cells, respectively). Using bioluminescence imaging (BLI) as readout for firefly luciferase-transduced NPC survival, the addition of both 293-bFGF and C17.2-bFGF helper cells was found to significantly improve cell survival up to 6-fold in vitro, while wild-type (WT, non-transduced) helper cells had no effect. Following co-transplantation of 293-bFGF or C17.2-bFGF cells in the striatum of Rag2(-/-) immunodeficient mice, in vivo human NPC survival could be significantly improved as compared to no helper cells or co-transplantation of WT cells for the first two days after co-transplantation. This enhancement of survival in C17.2-bFGF group was not achieved without Dox administration, indicating that the neuroprotective effect was specific for bFGF. The present results warrant further studies on the use of engineered helper cells, including those expressing other growth factors injected as mixed cell populations.
Collapse
Affiliation(s)
- Yajie Liang
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Louise Ågren
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Agatha Lyczek
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Chemical &Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Affiliation(s)
| | - Christian Joerg Braun
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| | - Kaan Boztug
- Hannover Medical School, Department of Pediatric Hematology/Oncology, Munich, Germany
| | - Christoph Klein
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
29
|
Aiuti A, Cossu G, de Felipe P, Galli MC, Narayanan G, Renner M, Stahlbom A, Schneider CK, Voltz-Girolt C. The Committee for Advanced Therapies' of the European Medicines Agency Reflection Paper on Management of Clinical Risks Deriving from Insertional Mutagenesis. HUM GENE THER CL DEV 2013; 24:47-54. [DOI: 10.1089/humc.2013.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alessandro Aiuti
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- San Raffaele-Telethon Institute for Gene Therapy, Via Olgettina 58, 20132 Milan, Italy
- University Department of Pediatrics, Bambino Gesù Children's Hospital and Tor Vergata University, Rome, Italy
| | - Giulio Cossu
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Department of Cell and Development Biology, University College London, Gower Street, London, WC1E 6BT United Kingdom
| | - Pablo de Felipe
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Maria Cristina Galli
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Gopalan Narayanan
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, Victoria, London, SW1W 9SZ United Kingdom
| | - Matthias Renner
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Axel Stahlbom
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Läkemedelsverket (Medical Products Agency), Dag Hammarskjölds väg 42, 75103 Uppsala, Sweden
| | - Christian K. Schneider
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Danish Health and Medicines Authority, Axel Heides Gade 1, 2300 Copenhagen, Denmark
- Twincore Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 730625 Hannover, Germany
| | - Caroline Voltz-Girolt
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
| |
Collapse
|
30
|
Wiedemann A, Hemmer K, Bernemann I, Göhring G, Pogozhykh O, Figueiredo C, Glage S, Schambach A, Schwamborn JC, Blasczyk R, Müller T. Induced pluripotent stem cells generated from adult bone marrow-derived cells of the nonhuman primate (Callithrix jacchus) using a novel quad-cistronic and excisable lentiviral vector. Cell Reprogram 2013. [PMID: 23194452 DOI: 10.1089/cell.2012.0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regenerative medicine is in need of solid, large animal models as a link between rodents and humans to evaluate the functionality, immunogenicity, and clinical safety of stem cell-derived cell types. The common marmoset (Callithrix jacchus) is an excellent large animal model, genetically close to humans and readily used worldwide in clinical research. Until now, only two groups showed the generation of induced pluripotent stem cells (iPSCs) from the common marmoset using integrating retroviral vectors. Therefore, we reprogrammed bone marrow-derived mesenchymal cells (MSCs) of adult marmosets in the presence of TAV, SB431542, PD0325901, and ascorbic acid via a novel, excisable lentiviral spleen focus-forming virus (SFFV)-driven quad-cistronic vector system (OCT3/4, KLF4, SOX2, C-MYC). Endogenous pluripotency markers like OCT3/4, KLF4, SOX2, C-MYC, LIN28, NANOG, and strong alkaline phosphatase signals were detected. Exogenous genes were silenced and additionally the cassette was removed with a retroviral Gag precursor system. The cell line could be cultured in absence of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) and could be successfully differentiated into embryoid bodies and teratomas with presence of all three germ layers. Directed differentiation generated neural progenitors, megakaryocytes, adipocytes, chondrocytes, and osteogenic cells. Thus, all criteria for fully reprogrammed bone marrow-MSCs of a nonhuman primate with a genetically sophisticated construct could be demonstrated. These cells will be a promising tool for future autologous transplantations.
Collapse
Affiliation(s)
- Anastasia Wiedemann
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sverdlov ED, Mineev K. Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends Mol Med 2013; 19:273-80. [PMID: 23481596 DOI: 10.1016/j.molmed.2013.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/23/2022]
Abstract
Stem cells (SCs) are thought to have great therapeutic potential, but due to continuously and stochastically arising new mutations that unpredictably change the composition of a cell population, the large-scale manufacturing of SCs with uniform properties and predictable behavior is a challenge. Quantitative evaluation of the characteristic mutation rate of a given stem cell line could be an important criterion in making the decision to use the line in medical practice. Such an evaluation could provide a new quality standard for newly derived human embryonic stem cell (hESC) lines prior to depositing them in stem cell banks. Here, we substantiate this view with simple calculations showing the effect of the mutation rate on changes in the cell population composition due to amplification. Selection of SCs with low mutation rate could reduce the risk of negative side effects during treatment.
Collapse
Affiliation(s)
- Eugene D Sverdlov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, 123182, Russia.
| | | |
Collapse
|
32
|
Corrigan-Curay J, Cohen-Haguenauer O, O'Reilly M, Ross SR, Fan H, Rosenberg N, Somia N, King N, Friedmann T, Dunbar C, Aiuti A, Naldini L, Baum C, von Kalle C, Kiem HP, Montini E, Bushman F, Sorrentino BP, Carrondo M, Malech H, Gahrton G, Shapiro R, Wolff L, Rosenthal E, Jambou R, Zaia J, Kohn DB. Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic stem cell gene therapy. Mol Ther 2012; 20:1084-94. [PMID: 22652996 DOI: 10.1038/mt.2012.93] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
33
|
Kohn DB, Pai SY, Sadelain M. Gene therapy through autologous transplantation of gene-modified hematopoietic stem cells. Biol Blood Marrow Transplant 2012; 19:S64-9. [PMID: 23032601 DOI: 10.1016/j.bbmt.2012.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
34
|
Kiem HP, Jerome KR, Deeks SG, McCune JM. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012; 10:137-47. [PMID: 22305563 DOI: 10.1016/j.stem.2011.12.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although combination antiretroviral therapy can dramatically reduce the circulating viral load in those infected with HIV, replication-competent virus persists. To eliminate the need for indefinite treatment, there is growing interest in creating a functional HIV-resistant immune system through the use of gene-modified hematopoietic stem cells (HSCs). Proof of concept for this approach has been provided in the instance of an HIV-infected adult transplanted with allogeneic stem cells from a donor lacking the HIV coreceptor, CCR5. Here, we review this and other strategies for HSC-based gene therapy for HIV disease.
Collapse
Affiliation(s)
- Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|