1
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
3
|
The proteasome and its role in the nervous system. Cell Chem Biol 2021; 28:903-917. [PMID: 33905676 DOI: 10.1016/j.chembiol.2021.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Proteasomes are multisubunit complexes that catalyze the majority of protein degradation in mammalian cells to maintain protein homeostasis and influence the regulation of most cellular processes. The proteasome, a multicatalytic protease complex, is a ring-like structure with a narrow pore that exhibits regulated gating, enabling the selective degradation of target proteins into peptide fragments. This process of removing proteins is essential for eliminating proteins that are no longer wanted, such as unfolded or aggregated proteins. This is important for preserving cellular function relevant to brain health and disease. Recently, in the nervous system, specialized proteasomes have been shown to generate peptides with important cellular functions. These discoveries challenge the prevailing notion that proteasomes primarily operate to eliminate proteins and identify signaling-competent proteasomes. This review focuses on the structure, function, and regulation of proteasomes and sheds light on emerging areas of investigation regarding the role of proteasomes in the nervous system.
Collapse
|
4
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
5
|
Proteasome Composition in Cytokine-Treated Neurons and Astrocytes is Determined Mainly by Subunit Displacement. Neurochem Res 2020; 45:860-871. [PMID: 31939090 DOI: 10.1007/s11064-020-02958-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, we investigated if subunit displacement and/or alterations in proteasome biosynthesis are responsible for the changes in the levels of constitutive proteasomes (c-20S), immunoproteasomes (i-20S) and the activators PA28 and PA700 in neurons and astrocytes cultured with a cytokine mixture (IFN-γ/TNF-α/IL-1β). Exposure of both cell types to cytokines for 24 h increases mRNA and protein expression of the i-20S-specific subunit β5i and PA28α/β, and leads to a decline in the amount of the c-20S-specific subunit β5. Since β5 mRNA levels are unchanged by the cytokine treatment, it is fair to conclude that displacement of constitutive β-subunits with inducible β5i subunits is likely the mechanism underlying the decrease in c-20S. As expected, the increase in the amount of the IFN-γ-inducible subunits coincides with elevated expression of phospho-STAT-1 and interferon regulatory factor-1 (IRF-1). However, inhibition of NF-κB signaling in cytokine-treated astrocytes reduces IRF-1 expression without affecting that of i-20S, c-20S and PA28. This suggests that STAT-1 is capable of increasing the transcription of i20S-specific subunits and PA28α/β by itself. The lack of a decrease in proteasome β5 mRNA expression is consistent with the fact that Nrf1 (Nfe2l1) and Nrf2 (Nfe2l2) levels are not reduced by pro-inflammatory cytokines. In contrast, we previously found that there is a significant Nrf1 dysregulation and reduced β5 mRNA expression in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). Thus, there are stressors in EAE, other than a pro-inflammatory environment, that are not present in cytokine-treated cells.
Collapse
|
6
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
8
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proc Natl Acad Sci U S A 2019; 116:7963-7972. [PMID: 30923110 DOI: 10.1073/pnas.1812413116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1-deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1-deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1-deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1-deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1-dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.
Collapse
|
9
|
Adelöf J, Andersson M, Porritt M, Petersen A, Zetterberg M, Wiseman J, Hernebring M. PA28αβ overexpression enhances learning and memory of female mice without inducing 20S proteasome activity. BMC Neurosci 2018; 19:70. [PMID: 30400847 PMCID: PMC6218978 DOI: 10.1186/s12868-018-0468-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background The proteasome system plays an important role in synaptic plasticity. Induction and maintenance of long term potentiation is directly dependent on selective targeting of proteins for proteasomal degradation. The 20S proteasome activator PA28αβ activates hydrolysis of small nonubiquitinated peptides and possesses protective functions upon oxidative stress and proteinopathy. The effect of PA28αβ activity on behavior and memory function is, however, not known. We generated a mouse model that overexpresses PA28α (PA28αOE) to understand PA28αβ function during healthy adult homeostasis via assessment of physiological and behavioral profiles, focusing on female mice. Results PA28α and PA28β protein levels were markedly increased in all PA28αOE tissues analyzed. PA28αOE displayed reduced depressive-like behavior in the forced swim test and improved memory/learning function assessed by intersession habituation in activity box and shuttle box passive avoidance test, with no significant differences in anxiety or general locomotor activity. Nor were there any differences found when compared to WT for body composition or immuno-profile. The cognitive effects of PA28αOE were female specific, but could not be explained by alterations in estrogen serum levels or hippocampal regulation of estrogen receptor β. Further, there were no differences in hippocampal protein expression of neuronal or synaptic markers between PA28αOE and WT. Biochemical analysis of hippocampal extracts demonstrated that PA28α overexpression did not increase PA28–20S peptidase activity or decrease K48-polyubiquitin levels. Instead, PA28αOE exhibited elevated efficiency in preventing aggregation in the hippocampus. Conclusions This study reveals, for the first time, a connection between PA28αβ and neuronal function. We found that PA28α overexpressing female mice displayed reduced depressive-like behavior and enhanced learning and memory. Since the positive effects of PA28α overexpression arose without an activation of 20S proteasome capacity, they are likely independent of PA28αβ’s role as a 20S proteasome activator and instead depend on a recognized chaperone-like function. These findings suggest that proteostasis in synaptic plasticity is more diverse than previously reported, and demonstrates a novel function of PA28αβ in the brain. Electronic supplementary material The online version of this article (10.1186/s12868-018-0468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,IMED Biotech Unit, Discovery Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - My Andersson
- Department of Clinical Sciences, Epilepsy Centre, Lund University, Lund, Sweden
| | - Michelle Porritt
- IMED Biotech Unit, Discovery Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - Anne Petersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - John Wiseman
- IMED Biotech Unit, Discovery Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,IMED Biotech Unit, Discovery Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
10
|
Mei JM, Niu CS. How does conserved dopamine neurotrophic factor protect against and rescue neurodegeneration of PC12 cells? Neural Regen Res 2017; 12:1145-1151. [PMID: 28852398 PMCID: PMC5558495 DOI: 10.4103/1673-5374.211195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo, but its potential value in treating Parkinson's disease remains controversial. Here, we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells. Afterwards, conserved dopamine neurotrophic factor was administrated as a therapeutic factor, both pretreatment and posttreatment. Our results showed that (1) conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology, and attenuated alpha-synuclein accumulation in differentiated PC12 cells. (2) Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre- and posttreatment with conserved dopamine neurotrophic factor. Similarly, 26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor. (3) With regard proteolytic enzymes (specifically, glutamyl peptide hydrolase, chymotrypsin, and trypsin), glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre- and posttreatment with conserved dopamine neurotrophic factor. However, upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor. There was no change in trypsin expression. We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities, and thereby protects and rescues PC12 cells against neurodegeneration.
Collapse
Affiliation(s)
- Jia-Ming Mei
- Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, China
| |
Collapse
|
11
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
12
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
13
|
Paumier KL, Luk KC, Manfredsson FP, Kanaan NM, Lipton JW, Collier TJ, Steece-Collier K, Kemp CJ, Celano S, Schulz E, Sandoval IM, Fleming S, Dirr E, Polinski NK, Trojanowski JQ, Lee VM, Sortwell CE. Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol Dis 2015; 82:185-199. [PMID: 26093169 DOI: 10.1016/j.nbd.2015.06.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies demonstrate that intrastriatal injections of fibrillar alpha-synuclein (α-syn) into mice induce Parkinson's disease (PD)-like Lewy body (LB) pathology formed by aggregated α-syn in anatomically interconnected regions and significant nigrostriatal degeneration. The aim of the current study was to evaluate whether exogenous mouse α-syn pre-formed fibrils (PFF) injected into the striatum of rats would result in accumulation of LB-like intracellular inclusions and nigrostriatal degeneration. Sprague-Dawley rats received unilateral intrastriatal injections of either non-fibrillized recombinant α-syn or PFF mouse α-syn in 1- or 2- sites and were euthanized at 30, 60 or 180 days post-injection (pi). Both non-fibrillized recombinant α-syn and PFF α-syn injections resulted in phosphorylated α-syn intraneuronal accumulations (i.e., diffuse Lewy neurite (LN)- and LB-like inclusions) with significantly greater accumulations following PFF injection. LB-like inclusions were observed in several areas that innervate the striatum, most prominently the frontal and insular cortices, the amygdala, and the substantia nigra pars compacta (SNpc). α-Syn accumulations co-localized with ubiquitin, p62, and were thioflavin-S-positive and proteinase-k resistant, suggesting that PFF-induced pathology exhibits properties similar to human LBs. Although α-syn inclusions within the SNpc remained ipsilateral to striatal injection, we observed bilateral reductions in nigral dopamine neurons at the 180-day time-point in both the 1- and 2-site PFF injection paradigms. PFF injected rats exhibited bilateral reductions in striatal dopaminergic innervation at 60 and 180 days and bilateral decreases in homovanillic acid; however, dopamine reduction was observed only in the striatum ipsilateral to PFF injection. Although the level of dopamine asymmetry in PFF injected rats at 180 days was insufficient to elicit motor deficits in amphetamine-induced rotations or forelimb use in the cylinder task, significant disruption of ultrasonic vocalizations was observed. Taken together, our findings demonstrate that α-syn PFF are sufficient to seed the pathological conversion and propagation of endogenous α-syn to induce a progressive, neurodegenerative model of α-synucleinopathy in rats.
Collapse
Affiliation(s)
- Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Jack W Lipton
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Christopher J Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephanie Celano
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Emily Schulz
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sheila Fleming
- Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | - Elliott Dirr
- Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole K Polinski
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| |
Collapse
|
14
|
Pastukhov YF, Plaksina DV, Lapshina KV, Guzhova IV, Ekimova IV. Exogenous protein HSP70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson's disease. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 457:225-7. [PMID: 25172587 DOI: 10.1134/s0012496614040139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/23/2022]
Affiliation(s)
- Yu F Pastukhov
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia,
| | | | | | | | | |
Collapse
|
15
|
Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology 2014; 15:547-57. [PMID: 25113739 DOI: 10.1007/s10522-014-9523-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Growing evidence suggests an unusual epidemiologic association between cancer and certain neurological conditions, particularly age-related neurodegenerative diseases. Cancer survivors have a 20-50% lower risk of developing Parkinson's and Alzheimer's disease, and patients with these neurodegenerative conditions have a substantially lower incidence of cancer. We review the epidemiologic evidence for this inverse co-morbidity and show that it is not simply an artifact of survival bias or under-diagnosis. We then review the potential biological explanations for this association, which is intimately linked to the very different nature of dividing cells and neurons. The known genetic and metabolic connections between cancer and neurodegeneration generally fall within two categories. The first includes shared genes and pathways such as Pin1 and the ubiquitin proteasome system that are dysregulated in different directions to cause one disease or the other. The second includes common pathophysiological mechanisms such as mitochondrial dysfunction, oxidative stress and DNA damage that drive both conditions, but with different cellular fates. We discuss examples of these biological links and their implications for developing new approaches to prevention and treatment of both diseases.
Collapse
|
16
|
Regulation of feedback between protein kinase A and the proteasome system worsens Huntington's disease. Mol Cell Biol 2012; 33:1073-84. [PMID: 23275441 DOI: 10.1128/mcb.01434-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a CAG repeat in the Huntingtin (HTT) gene. Abnormal regulation of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway occurs during HD progression. Here we found that lower PKA activity was associated with proteasome impairment in the striatum for two HD mouse models (R6/2 and N171-82Q) and in mutant HTT (mHTT)-expressing striatal cells. Because PKA regulatory subunits (PKA-Rs) are proteasome substrates, the mHTT-evoked proteasome impairment caused accumulation of PKA-Rs and subsequently inhibited PKA activity. Conversely, activation of PKA enhanced the phosphorylation of Rpt6 (a component of the proteasome), rescued the impaired proteasome activity, and reduced mHTT aggregates. The dominant-negative Rpt6 mutant (Rpt6(S120A)) blocked the ability of a cAMP-elevating reagent to enhance proteasome activity, whereas the phosphomimetic Rpt6 mutant (Rpt6(S120D)) increased proteasome activity, reduced HTT aggregates, and ameliorated motor impairment. Collectively, our data demonstrated that positive feedback regulation between PKA and the proteasome is critical for HD pathogenesis.
Collapse
|
17
|
Ubiquitin-proteasome system impairment and MPTP-induced oxidative stress in the brain of C57BL/6 wild-type and GSTP knockout mice. Mol Neurobiol 2012; 47:662-72. [PMID: 23129554 DOI: 10.1007/s12035-012-8368-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary proteolytic complex responsible for the elimination of damaged and misfolded intracellular proteins, often formed upon oxidative stress. Parkinson's disease (PD) is neuropathologically characterized by selective death of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracytoplasmic inclusions of aggregated proteins. Along with mitochondrial dysfunction and oxidative stress, defects in the UPS have been implicated in PD. Glutathione S-transferase pi (GSTP) is a phase II detoxifying enzyme displaying important defensive roles against the accumulation of reactive metabolites that potentiate the aggression of SN neuronal cells, by regulating several processes including S-glutathionylation, modulation of glutathione levels and control of kinase-catalytic activities. In this work we used C57BL/6 wild-type and GSTP knockout mice to elucidate the effect of both MPTP and MG132 in the UPS function and to clarify if the absence of GSTP alters the response of this pathway to the neurotoxin and proteasome inhibitor insults. Our results demonstrate that different components of the UPS have different susceptibilities to oxidative stress. Importantly, when compared to the wild-type, GSTP knockout mice display decreased ubiquitination capacity and overall increased susceptibility to UPS damage and inactivation upon MPTP-induced oxidative stress.
Collapse
|
18
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
19
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
20
|
Landau AM, Siegrist-Johnstone R, Desbarats J. Fas expression promotes proteasomal activity in toxin-induced parkinsonism. Acta Neuropsychiatr 2012; 24:166-71. [PMID: 26953010 DOI: 10.1111/j.1601-5215.2011.00615.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Fas (CD95), commonly categorised as a death receptor due to its well-defined role in apoptosis, can paradoxically also promote neuroprotection. We have previously found that defects in Fas signalling render mice highly susceptible to neural degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease (PD). Decreased activity of the ubiquitin proteasome system and accumulation of protein aggregates are implicated in PD pathogenesis. Here, we investigate the relationship between Fas and ubiquitin proteasomal activity in neuronal cells. METHODS We performed proteasome assays in neuroblastoma cells and in midbrain cultures of wild-type and Fas-deficient mice. RESULTS Neuroblastoma cells upregulated proteasomal activity in response to an activating Fas antibody in vitro. Furthermore, neural tissue from Fas-deficient mice showed decreased proteasomal activity compared with the tissue from wild-type mice when exposed to a PD-inducing toxin in vivo. CONCLUSION These findings suggest that mechanisms for Fas-mediated neuroprotection may include Fas-induced upregulation of proteasomal activity, and consequently less accumulation of toxic protein aggregates.
Collapse
Affiliation(s)
- Anne M Landau
- Department of Physiology, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | - Julie Desbarats
- Department of Physiology, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
21
|
Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, Kirik D, Cuadrado A. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum Mol Genet 2012; 21:3173-92. [DOI: 10.1093/hmg/dds143] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
22
|
Zheng J, Dasgupta A, Bizzozero OA. Changes in 20S subunit composition are largely responsible for altered proteasomal activities in experimental autoimmune encephalomyelitis. J Neurochem 2012; 121:486-94. [PMID: 22353035 DOI: 10.1111/j.1471-4159.2012.07699.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We recently reported that the proteasomal peptidase activities are altered in the cerebellum of mice with myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). To determine whether these fluctuations are caused by proteasome activation/inactivation and/or changes in the levels of individual β subunits, we characterized the proteasome subunit composition by western blotting. The results show that the rise in proteasomal peptidase activity in acute EAE correlates with an augmented expression of inducible β subunits whereas the decline in activity in chronic EAE correlates with a reduction in the amount of standard β subunits. Using pure standard (s) and immuno (i) 20S particles for calibration, we determined that the changes in the levels of catalytic subunits account for all of the fluctuations in peptidase activities in EAE. The i-20S and s-20S proteasome were found to degrade carbonylated β-actin with similar efficiency, suggesting that the amount of protein carbonyls in EAE may be controlled by the activity of both core particles. We also found an increase in proteasome activator 11S regulatory particle and a decrease in inhibitor proteasome inhibitor with molecular mass of 31 kDa levels in acute EAE, reflecting a response to inflammation. Elevated levels of 19S regulatory particle and 11S regulatory particle in chronic EAE, however, may occur in response to diminished proteasomal activity in this phase. These findings are central towards understanding the altered proteasomal physiology in inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Jianzheng Zheng
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
23
|
|
24
|
Jantas D, Lorenc-Koci E, Kubera M, Lason W. Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons. Neurotoxicology 2011; 32:845-56. [PMID: 21683092 DOI: 10.1016/j.neuro.2011.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/17/2011] [Accepted: 05/25/2011] [Indexed: 10/25/2022]
Abstract
The dysfunction of the proteasome system is implicated in the pathomechanism of several chronic neurodegenerative diseases. Lactacystin (LC), an irreversible proteasome inhibitor, induces cell death in primary cortical neurons, however, the molecular mechanisms of its neurotoxic action has been only partially unraveled. In this study we aimed to elucidate an involvement of the key enzymatic pathways responsible for LC-induced neuronal cell death. Incubation of primary cortical neurons with LC (0.25-50 μg/ml) evoked neuronal cell death in concentration- and time-dependent manner. Lactacystin (2.5 μg/ml; 6.6μM) enhanced caspase-3 activity, but caspase-3 inhibitor, Ac-DEVD-CHO did not attenuate the LC-evoked cell damage. Western blot analysis showed a time-dependent, prolonged activation of MAPK/ERK1/2 pathway after LC exposure. Moreover, inhibitors of MAPK/ERK1/2 signaling, U0126 and PD98052 attenuated the LC-evoked cell death. We also found that LC-treatment resulted in the induction of calpains and calpain inhibitors (MDL28170 and calpeptin) protected neurons against the LC-induced cell damage. Neuroprotective action of MAPK/ERK1/2 and calpain inhibitors were connected with attenuation of LC-induced DNA fragmentation measured by Hoechst 33342 staining and TUNEL assay. However, only MAPK/ERK1/2 but not calpain inhibitors, attenuated the LC-induced AIF (apoptosis inducing factor) release. Further studies showed no synergy between neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors given in combination when compared to their effects alone. The obtained data provided evidence for neuroprotective potency of MAPK/ERK1/2 and calpain, but not caspase-3 inhibition against the neurotoxic effects of LC in primary cortical neurons and give rationale for using these inhibitors in the treatment of neurodegenerative diseases connected with proteasome dysfunction.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
25
|
Lorenc-Koci E, Lenda T, Antkiewicz-Michaluk L, Wardas J, Domin H, Smiałowska M, Konieczny J. Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson's disease in rats. Neurochem Int 2011; 58:839-49. [PMID: 21419185 DOI: 10.1016/j.neuint.2011.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
Abstract
Impairment of the ubiquitin-proteasome system, responsible for clearing of misfolded and unwanted proteins, has been implicated in the loss of nigrostriatal dopaminergic neurons characteristic of Parkinson's disease (PD). Recently, proteasome inhibitors have been used to model parkinsonian-like changes in animals. In the present study, the effects of intrastriatal and intranigral injections of the selective proteasome inhibitor lactacystin on key markers of PD were examined in Wistar rats. Comparisons of these two different routes of lactacystin administration revealed that only a unilateral, intranigral injection of lactacystin at a dose of 0.5, 1, 2.5 and 5 μg/2 μl produced after 7 days distinct decreases in the concentrations of dopamine (DA) and its metabolites (DOPAC, 3-MT, HVA) in the ipsilateral striatum. The used doses of lactacystin (except for 0.5 μg/2 μl) significantly accelerated DA catabolism, i.e. the total, oxidative MAO-dependent and COMT-catalyzed pathways, as assessed by HVA/DA, DOPAC/DA and 3-MT/DA ratios, respectively, in the ipsilateral striatum. Such alterations were not observed in the striatal DA content and catabolism either 7, 14 or 21 days after a unilateral, intrastriatal high-dose lactacystin injection (5 and 10 μg/2 μl). Intranigrally administered lactacystin (1 μg/2 μl) caused a marked decline of tyrosine hydroxylase (TH) and α-synuclein protein levels in that structure. Neither TH nor α-synuclein protein levels in the substantia nigra (SN) were affected by high lactacystin doses injected intrastriatally. Moreover, stereological counting of TH-immunoreactive neurons and autoradiographic analysis of [(3)H]GBR 12,935 binding to dopamine transporter confirmed a loss of nigrostriatal dopaminergic neurons after an intranigral lactacystin (1 and 2.5 μg/2 μl) injection. An appearance of cardinal neurochemical and histological changes of parkinsonian type only after intranigral lactacystin injection indicates that DA cell bodies in the SN, but not DA terminals in the striatum are susceptible to proteasome inhibition.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., PL-31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bedford L, Layfield R, Mayer RJ, Peng J, Xu P. Diverse polyubiquitin chains accumulate following 26S proteasomal dysfunction in mammalian neurones. Neurosci Lett 2011; 491:44-7. [PMID: 21215295 DOI: 10.1016/j.neulet.2010.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/23/2010] [Accepted: 12/31/2010] [Indexed: 11/30/2022]
Abstract
A generality has been that polyubiquitin chain linkage can differentially address proteins for various physiological processes. 26S proteasomal degradation is the most established function of ubiquitin signalling, classically linked to Lys48 polyubiquitin chains. The other well-characterised polyubiquitin linkage, via Lys63, mediates nonproteolytic functions. However, there are five other lysine residues and ubiquitin's amino terminus which can participate in polyubiquitination. Our 26S proteasome knockout mouse provides a unique opportunity to comprehensively investigate the ubiquitin signals in their physiological context in neurones following genetic inhibition of the proteasome, using quantitative mass spectrometry of ubiquitin linkage-specific signature peptides. We provide the first evidence for diverse polyubiquitin chains in mammalian neurones in vivo and show that polyubiquitin linked via Lys6, Lys11, Lys29 and Lys48, but not Lys63, accumulates upon 26S proteasome dysfunction. This adaptable nature of ubiquitin signals for proteasomal targeting could reflect the extensive cellular processes which are regulated by proteasome proteolysis and/or may involve specific ubiquitin linkage preferences for subsets of proteins in mammalian neurones. Our molecular pathological findings make a significant contribution to the understanding of ubiquitin signalling in ubiquitin-proteasome function.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
28
|
González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J. Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Front Neuroanat 2010; 4:140. [PMID: 21079748 PMCID: PMC2978035 DOI: 10.3389/fnana.2010.00140] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022] Open
Abstract
The term vulnerability was first associated with the midbrain dopaminergic neurons 85 years ago, before they were identified as monoaminergic neurons, when Foix and Nicolesco (1925) reported the loss of neuromelanin containing neurons in the midbrain of patients with post-encephalitic Parkinson's disease (PD). A few years later, Hassler (1938) showed that degeneration is more intense in the ventral tier of the substantia nigra compacta than in its dorsal tier and the ventral tegmental area (VTA), outlining the concept of differential vulnerability of midbrain dopaminergic (DA-) neurons. Nowadays, we know that other neuronal groups degenerate in PD, but the massive loss of nigral DA-cells is its pathological hallmark, having a pivotal position in the pathophysiology of the disease as it is responsible for the motor symptoms. Data from humans as well as cellular and animal models indicate that DA-cell degeneration is a complex process, probably precipitated by the convergence of different risk factors, mediated by oxidative stress, and involving pathogenic factors arising within the DA-neuron (intrinsic factors), and from its environment and distant interconnected brain regions (extrinsic factors). In light of current data, intrinsic factors seem to be preferentially involved in the first steps of the degenerative process, and extrinsic factors in its progression. A controversial issue is the relative weight of the impairment of common cell functions, such as energy metabolism and proteostasis, and specific dopaminergic functions, such as pacemaking activity and DA handling, in the pathogenesis of DA-cell degeneration. Here we will review the current knowledge about the relevance of these factors at the beginning and during the progression of PD, and in the differential vulnerability of midbrain DA-cells.
Collapse
|
29
|
Oxidative protein damage and the proteasome. Amino Acids 2010; 42:23-38. [DOI: 10.1007/s00726-010-0646-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 05/29/2010] [Indexed: 12/24/2022]
|