1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, Khanna R, Riegel AC. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol Neurobiol 2020; 57:346-357. [PMID: 31359322 PMCID: PMC6980501 DOI: 10.1007/s12035-019-01711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Bethany Hines
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander C W Smith
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
- Department of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
3
|
Bonnet U, Scherbaum N. How addictive are gabapentin and pregabalin? A systematic review. Eur Neuropsychopharmacol 2017; 27:1185-1215. [PMID: 28988943 DOI: 10.1016/j.euroneuro.2017.08.430] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/16/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
In the last ten years, gabapentin and pregabalin have been becoming dispensed broadly and sold on black markets, thereby, exposing millions to potential side-effects. Meanwhile, several pharmacovigilance-databases have warned for potential abuse liabilities and overdose fatalities in association with both gabapentinoids. To evaluate their addiction risk in more detail, we conducted a systematic review on PubMed/Scopus and included 106 studies. We did not find convincing evidence of a vigorous addictive power of gabapentinoids which is primarily suggested from their limited rewarding properties, marginal notes on relapses, and the very few cases with gabapentinoid-related behavioral dependence symptoms (ICD-10) in patients without a prior abuse history (N=4). In support, there was no publication about people who sought treatment for the use of gabapentinoids. Pregabalin appeared to be somewhat more addictive than gabapentin regarding the magnitude of behavioral dependence symptoms, transitions from prescription to self-administration, and the durability of the self-administrations. The principal population at risk for addiction of gabapentinoids consists of patients with other current or past substance use disorders (SUD), mostly opioid and multi-drug users, who preferred pregabalin. Pure overdoses of gabapentinoids appeared to be relative safe but can become lethal (pregabalin > gabapentin) in mixture with other psychoactive drugs, especially opioids again and sedatives. Based upon these results, we compared the addiction risks of gabapentin and pregabalin with those of traditional psychoactive substances and recommend that in patients with a history of SUD, gabapentinoids should be avoided or if indispensable, administered with caution by using a strict therapeutic and prescription monitoring.
Collapse
Affiliation(s)
- U Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Grutholzallee 21, D-44577 Castrop-Rauxel, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany.
| | - N Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
4
|
González B, Rivero-Echeto C, Muñiz JA, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex. Addict Biol 2016; 21:589-602. [PMID: 25871318 DOI: 10.1111/adb.12249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC)-dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1 mg/kg) depressed voltage-dependent calcium currents (ICa ) and increased hyperpolarization-activated cation current (IH ) amplitude and the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e. bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of (1) voltage-gated calcium channels P/Q-type Cacna1a (Cav 2.1), N-type Cacna1b (Cav 2.2), T-type Cav 3.1 Cacna1g, Cav 3.2 Cacna1h, Cav 3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1); (2) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2; and (3) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether, these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie PFC functional alterations that could lead to PFC impairments observed in METH-addicted individuals.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Celeste Rivero-Echeto
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología, Biología Molecular y Neurociencias; Departamento de Fisiología, Biología Molecular y Celular ‘Dr. Hector Maldonado’ (DFBMC); Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Javier A. Muñiz
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch; NIH/NIDA Intramural Research Program; Baltimore MD USA
| | - Edgar García-Rill
- Center for Translational Neuroscience; Department of Neurobiology and Developmental Sciences; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología, Biología Molecular y Neurociencias; Departamento de Fisiología, Biología Molecular y Celular ‘Dr. Hector Maldonado’ (DFBMC); Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
| |
Collapse
|
5
|
Role of adenosine receptor subtypes in methamphetamine reward and reinforcement. Neuropharmacology 2014; 89:265-73. [PMID: 25301277 DOI: 10.1016/j.neuropharm.2014.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/07/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022]
Abstract
The neurobiology of methamphetamine (MA) remains largely unknown despite its high abuse liability. The present series of studies explored the role of adenosine receptors on MA reward and reinforcement and identified alterations in the expression of adenosine receptors in dopamine terminal areas following MA administration in rats. We tested whether stimulating adenosine A1 or A2A receptor subtypes would influence MA-induced place preference or MA self-administration on fixed and progressive ratio schedules in male Sprague-Dawley rats. Stimulation of either adenosine A1 or A2A receptors significantly reduced the development of MA-induced place preference. Stimulating adenosine A1, but not A2A, receptors reduced MA self-administration responding. We next tested whether repeated experimenter-delivered MA administration would alter the expression of adenosine receptors in the striatal areas using immunoblotting. We observed no change in the expression of adenosine receptors. Lastly, rats were trained to self-administer MA or saline for 14 days and we detected changes in adenosine A1 and A2A receptor expression using immunoblotting. MA self-administration significantly increased adenosine A1 in the nucleus accumbens shell, caudate-putamen and prefrontal cortex. MA self-administration significantly decreased adenosine A2A receptor expression in the nucleus accumbens shell, but increased A2A receptor expression in the amygdala. These findings demonstrate that MA self-administration produces selective alterations in adenosine receptor expression in the nucleus accumbens shell and that stimulation of adenosine receptors reduces several behavioral indices of MA addiction. Together, these studies shed light onto the neurobiological alterations incurred through chronic MA use that may aid in the development of treatments for MA addiction.
Collapse
|
6
|
Mizuno K, Kurokawa K, Ohkuma S. Regulation of type 1 IP3 receptor expression by dopamine D2-like receptors via AP-1 and NFATc4 activation. Neuropharmacology 2013; 71:264-72. [DOI: 10.1016/j.neuropharm.2013.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
|
7
|
Kurokawa K, Mizuno K, Ohkuma S. Dopamine D1 receptor signaling system regulates ryanodine receptor expression in ethanol physical dependence. Alcohol Clin Exp Res 2012; 37:771-83. [PMID: 23278119 DOI: 10.1111/acer.12036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 09/15/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ryanodine receptors (RyRs) amplifying activity-dependent calcium influx via calcium-induced calcium release play an important role in central nervous system functions including learning, memory, and drug abuse. In this study, we investigated the role and the regulatory mechanisms of RyR expression under continuous exposure of mice to ethanol (EtOH) vapor for 9 days. METHODS The model of EtOH physical dependence was prepared as follows: 8-week-old male ddY mice were exposed to EtOH vapor for 9 days. Protein and mRNA of RyR-1, RyR-2, and RyR-3 in the frontal cortex and limbic forebrain were determined by Western blot and real-time RT-PCR analysis, respectively. RESULTS Exposure of mice to EtOH vapor for 9 days induced significant withdrawal signs when estimated with withdrawal score, which was dose-dependently suppressed by intracerebroventricular administration of dantrolene, an RyR antagonist. Protein levels of RyR-1 and RyR-2 in the frontal cortex and limbic forebrain significantly increased during EtOH vapor exposure for 9 days with increased expression of their mRNA, whereas that of RyR-3 in these 2 brain regions showed no changes. Increased proteins and mRNA of RyR-1 and RyR-2 were completely abolished by SCH23390, a selective antagonist of dopamine D1 receptors (D1DRs), but not by sulpiride, a selective antagonist of D2DRs. CONCLUSIONS RyRs play a critical role in the development of EtOH physical dependence and that the up-regulation of RyRs in the brain of mouse, showing EtOH physical dependence is regulated by D1DRs.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
8
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
9
|
Kurokawa K, Mizuno K, Kiyokage E, Shibasaki M, Toida K, Ohkuma S. Dopamine D1 receptor signaling system regulates ryanodine receptor expression after intermittent exposure to methamphetamine in primary cultures of midbrain and cerebral cortical neurons. J Neurochem 2011; 118:773-83. [DOI: 10.1111/j.1471-4159.2011.07366.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kurokawa K, Shibasaki M, Kiyokage E, Mizuno K, Toida K, Ohkuma S. Involvement of NMDA receptors in ryanodine receptor expression in dopaminergic neurons in the ventral tegmental area of mice with intermittent methamphetamine treatment. Synapse 2011; 65:1156-65. [DOI: 10.1002/syn.20953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/06/2011] [Indexed: 11/11/2022]
|
11
|
Kurokawa K, Mizuno K, Shibasaki M, Kiyokage E, Toida K, Ohkuma S. Cocaine increases ryanodine receptors via dopamine D1 receptors. Synapse 2011; 65:1106-12. [DOI: 10.1002/syn.20935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/17/2011] [Indexed: 11/08/2022]
|
12
|
Kurokawa K, Mizuno K, Shibasaki M, Ohkuma S. Dopamine D1 Receptors Participate in Cocaine-Induced Place Preference via Regulation of Ryanodine Receptor Expression. J Pharmacol Sci 2011; 117:87-97. [DOI: 10.1254/jphs.11106fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Kazi JA, Abu-Hassan MI. Gabapentin Completely Attenuated the Acute Morphine-Induced c-Fos Expression in the Rat Nucleus Accumbens. J Mol Neurosci 2010; 45:101-9. [DOI: 10.1007/s12031-010-9435-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/02/2010] [Indexed: 01/19/2023]
|