1
|
Piña-Leyva C, Lara-Lozano M, Rodríguez-Sánchez M, Vidal-Cantú GC, Barrientos Zavalza E, Jiménez-Estrada I, Delgado-Lezama R, Rodríguez-Sosa L, Granados-Soto V, González-Barrios JA, Florán-Garduño B. Hypothalamic A11 Nuclei Regulate the Circadian Rhythm of Spinal Mechanonociception through Dopamine Receptors and Clock Gene Expression. Life (Basel) 2022; 12:life12091411. [PMID: 36143447 PMCID: PMC9506518 DOI: 10.3390/life12091411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night–day interphase and peaking at 14.63 h. Similarly, DA and DOPAC’s spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.
Collapse
Affiliation(s)
- Celia Piña-Leyva
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Manuel Lara-Lozano
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
| | - Marina Rodríguez-Sánchez
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Guadalupe C. Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Ericka Barrientos Zavalza
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Ismael Jiménez-Estrada
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Rodolfo Delgado-Lezama
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Leonardo Rodríguez-Sosa
- Department of Physiology, Medicine Faculty, National Autonomous University of Mexico, University City, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Juan Antonio González-Barrios
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| | - Benjamín Florán-Garduño
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| |
Collapse
|
2
|
Calderón-Rosete G, González-Barrios JA, Piña-Leyva C, Moreno-Sandoval HN, Lara-Lozano M, Rodríguez-Sosa L. Transcriptional identification of genes light-interacting in the extraretinal photoreceptors of the crayfish Procambarusclarkii. Zookeys 2021; 1072:107-127. [PMID: 34899009 PMCID: PMC8626408 DOI: 10.3897/zookeys.1072.73075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Crayfish serve as a model for studying the effect of environmental lighting on locomotor activity and neuroendocrine functions. The effects of light on this organism are mediated differentially by retinal and extraretinal photoreceptors located in the cerebroid ganglion and the pleonal nerve cord. However, some molecular aspects of the phototransduction cascade in the pleonal extraretinal photoreceptors remain unknown. In this study, transcriptome data from the pleonal nerve cord of the crayfish Procambarusclarkii (Girard,1852) were analyzed to identify transcripts that potentially interact with phototransduction process. The Illumina MiSeq System and the pipeline Phylogenetically Informed Annotation (PIA) were employed, which places uncharacterized genes into pre-calculated phylogenies of gene families. Here, for the first time 62 transcripts identified from the pleonal nerve cord that are related to light-interacting pathways are reported; they can be classified into the following 11 sets: 1) retinoid pathway in vertebrates and invertebrates, 2) photoreceptor specification, 3) rhabdomeric phototransduction, 4) opsins 5) ciliary phototransduction, 6) melanin synthesis, 7) pterin synthesis, 8) ommochrome synthesis, 9) heme synthesis, 10) diurnal clock, and 11) crystallins. Moreover, this analysis comparing the sequences located on the pleonal nerve cord to eyestalk sequences reported in other studies reveals 94-100% similarity between the 55 common proteins identified. These results show that both retinal and pleonal non-visual photoreceptors in the crayfish equally expressed the transcripts involved in light detection. Moreover, they suggest that the genes related to ocular and extraocular light perception in the crayfish P.clarkii use biosynthesis pathways and phototransduction cascades commons.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, MéxicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
| | - Celia Piña-Leyva
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, 07360, MéxicoCentro de Investigación y Estudios AvanzadosCiudad de MéxicoMexico
| | - Hayde Nallely Moreno-Sandoval
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
| | - Manuel Lara-Lozano
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, 07360, MéxicoCentro de Investigación y Estudios AvanzadosCiudad de MéxicoMexico
| | - Leonardo Rodríguez-Sosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, MéxicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
3
|
Identification of putative amine receptor complement in the eyestalk of the crayfish, Procambarus clarkii. INVERTEBRATE NEUROSCIENCE 2019; 19:12. [PMID: 31549228 DOI: 10.1007/s10158-019-0232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
In decapod crustaceans, the amines dopamine, octopamine, serotonin, and histamine are known to serve as locally released and/or circulating neuromodulators. While many studies have focused on determining the modulatory actions of amines on decapod nervous systems, comparatively little is known about the identity of the receptors through which they exert their actions. Here, a crayfish, Procambarus clarkii, tissue-specific transcriptome was used to identify putative amine receptors in the eyestalk, a structure composed largely of the eyestalk ganglia, including the neuroendocrine X-organ-sinus gland system, and retina. Transcripts encoding 17 distinct putative amine receptors, three dopamine (one dopamine 1-like, one dopamine 2-like, and one dopamine/ecdysteroid-like), five octopamine (one alpha-like, three beta-like, and one octopamine/tyramine-like), three serotonin (two type-1-like and one type-7-like), and six histamine (five histamine-gated chloride channel A-like and one histamine-gated chloride channel B-like) were identified in the assembly. Comparison of the nucleotide sequence of the transcript encoding one predicted type-1-like serotonin receptor with that cloned previously from the P. clarkii nervous system shows the two sequences to be essentially identical, providing increased support for the validity of the transcripts used to deduce the proteins reported here. Reciprocal BLAST and structural/functional domain analyses support the protein family annotations ascribed to the putative P. clarkii receptors. These data represent the first large-scale description of amine receptors from P. clarkii, and as such provide a new resource for initiating gene-based studies of aminergic control of physiology/behavior at the level of receptors in this species.
Collapse
|
4
|
Shiratori C, Suzuki N, Momohara Y, Shiraishi K, Aonuma H, Nagayama T. Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Eur J Neurosci 2017; 46:1863-1874. [PMID: 28661085 DOI: 10.1111/ejn.13632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023]
Abstract
Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT1 receptor antagonist blocked the reverse phototaxis while serotonin 5HT2 receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA1 receptor antagonist blocked this reverse phototaxis, while dopamine DA2 receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.
Collapse
Affiliation(s)
- Chihiro Shiratori
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Nanoka Suzuki
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Kyosuke Shiraishi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560, Yamagata, Japan
| |
Collapse
|
5
|
Tomina Y, Kibayashi A, Yoshii T, Takahata M. Chronic electromyographic analysis of circadian locomotor activity in crayfish. Behav Brain Res 2013; 249:90-103. [PMID: 23631885 DOI: 10.1016/j.bbr.2013.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 11/27/2022]
Abstract
Animals generally exhibit circadian rhythms of locomotor activity. They initiate locomotor behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. The neuronal mechanisms underlying circadian locomotor activity can, therefore, be based on the rhythmic changes in either reflexive efficacy or endogenous activity. In crayfish Procambarus clarkii, it can be determined by analyzing electromyographic (EMG) patterns of walking legs whether the walking behavior is initiated reflexively or spontaneously. In this study, we examined quantitatively the leg muscle activity that underlies the locomotor behavior showing circadian rhythms in crayfish. We newly developed a chronic EMG recording system that allowed the animal to freely behave under a tethered condition for more than 10 days. In the LD condition in which the animals exhibited LD entrainment, the rhythmic burst activity of leg muscles for stepping behavior was preceded by non-rhythmic tonic activation that lasted for 1323±488ms when the animal initiated walking. In DD and LL free-running conditions, the pre-burst activation lasted for 1779±31 and 1517±39ms respectively. In the mechanical stimulus-evoked walking, the pre-burst activation ended within 79±6ms. These data suggest that periodic changes in the crayfish locomotor activity under the condition of LD entrainment or free-running are based on activity changes in the spontaneous initiation mechanism of walking behavior rather than those in the sensori-motor pathway connecting mechanoreceptors with leg movements.
Collapse
Affiliation(s)
- Yusuke Tomina
- Animal Behavior and Intelligence, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | |
Collapse
|
6
|
Villagran-Vargas E, Rodríguez-Sosa L, Hustert R, Blicher A, Laub K, Heimburg T. Variations in interpulse interval of double action potentials during propagation in single neurons. Synapse 2012; 67:68-78. [PMID: 23073909 DOI: 10.1002/syn.21616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 11/07/2022]
Abstract
In this work, we analyzed the interpulse interval (IPI) of doublets and triplets in single neurons of three biological models. Pulse trains with two or three spikes originate from the process of sensory mechanotransduction in neurons of the locust femoral nerve, as well as through spontaneous activity both in the abdominal motor neurons and the caudal photoreceptor of the crayfish. We show that the IPI for successive low-frequency single action potentials, as recorded with two electrodes at two different points along a nerve axon, remains constant. On the other hand, IPI in doublets either remains constant, increases or decreases by up to about 3 ms as the pair propagates. When IPI increases, the succeeding pulse travels at a slower speed than the preceding one. When IPI is reduced, the succeeding pulse travels faster than the preceding one and may exceed the normal value for the specific neuron. In both cases, IPI increase and reduction, the speed of the preceding pulse differs slightly from the normal value, therefore the two pulses travel at different speeds in the same nerve axon. On the basis of our results, we may state that the effect of attraction or repulsion in doublets suggests a tendency of the spikes to reach a stable configuration. We strongly suggest that the change in IPI during spike propagation of doublets opens up a whole new realm of possibilities for neural coding and may have major implications for understanding information processing in nervous systems.
Collapse
Affiliation(s)
- Edgar Villagran-Vargas
- Membrane Biophysics Group, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|