1
|
Kirkland JM, Edgar EL, Patel I, Feustel P, Belin S, Kopec AM. Synaptic pruning during adolescence shapes adult social behavior in both males and females. Dev Psychobiol 2024; 66:e22473. [PMID: 38433422 PMCID: PMC11758907 DOI: 10.1002/dev.22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic "reward" circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. We previously demonstrated that during adolescence, in rats, microglial synaptic pruning shapes the development of NAc and social play behavior in males and females. In this report, we hypothesize that interrupting microglial pruning in NAc during adolescence will have persistent effects on male and female social behavior in adulthood. We found that inhibiting microglial pruning in the NAc during adolescence had different effects on social behavior in males and females. In males, inhibiting pruning increased familiar exploration and increased nonsocial contact. In females, inhibiting pruning did not change familiar exploration behavior but increased active social interaction. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors toward a familiar conspecific in both males and females.
Collapse
Affiliation(s)
- Julia M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
2
|
Brewer KK, Brewer KM, Terry TT, Caspary T, Vaisse C, Berbari NF. Postnatal Dynamic Ciliary ARL13B and ADCY3 Localization in the Mouse Brain. Cells 2024; 13:259. [PMID: 38334651 PMCID: PMC10854790 DOI: 10.3390/cells13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Collapse
Affiliation(s)
- Katlyn K. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, CA 92697, USA;
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
- Stark Neurosciences Research Institute, Indiana University-Indianapolis, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Kohler CG, Wolf DH, Abi-Dargham A, Anticevic A, Cho YT, Fonteneau C, Gil R, Girgis RR, Gray DL, Grinband J, Javitch JA, Kantrowitz JT, Krystal JH, Lieberman JA, Murray JD, Ranganathan M, Santamauro N, Van Snellenberg JX, Tamayo Z, Gur RC, Gur RE, Calkins ME. Illness Phase as a Key Assessment and Intervention Window for Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:340-350. [PMID: 37519466 PMCID: PMC10382701 DOI: 10.1016/j.bpsgos.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
The phenotype of schizophrenia, regardless of etiology, represents the most studied psychotic disorder with respect to neurobiology and distinct phases of illness. The early phase of illness represents a unique opportunity to provide effective and individualized interventions that can alter illness trajectories. Developmental age and illness stage, including temporal variation in neurobiology, can be targeted to develop phase-specific clinical assessment, biomarkers, and interventions. We review an earlier model whereby an initial glutamate signaling deficit progresses through different phases of allostatic adaptation, moving from potentially reversible functional abnormalities associated with early psychosis and working memory dysfunction, and ending with difficult-to-reverse structural changes after chronic illness. We integrate this model with evidence of dopaminergic abnormalities, including cortical D1 dysfunction, which develop during adolescence. We discuss how this model and a focus on a potential critical window of intervention in the early stages of schizophrenia impact the approach to research design and clinical care. This impact includes stage-specific considerations for symptom assessment as well as genetic, cognitive, and neurophysiological biomarkers. We examine how phase-specific biomarkers of illness phase and brain development can be incorporated into current strategies for large-scale research and clinical programs implementing coordinated specialty care. We highlight working memory and D1 dysfunction as early treatment targets that can substantially affect functional outcome.
Collapse
Affiliation(s)
- Christian G. Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H. Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Youngsun T. Cho
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Clara Fonteneau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Ragy R. Girgis
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - David L. Gray
- Cerevel Therapeutics Research and Development, East Cambridge, Massachusetts
| | - Jack Grinband
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Jonathan A. Javitch
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York
| | - Joshua T. Kantrowitz
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- New York State Psychiatric Institute, New York
- Nathan Kline Institute, Orangeburg, New York
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jeffrey A. Lieberman
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Santamauro
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Zailyn Tamayo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
5
|
Kirkland JM, Edgar EL, Patel I, Kopec AM. Impaired microglia-mediated synaptic pruning in the nucleus accumbens during adolescence results in persistent dysregulation of familiar, but not novel social interactions in sex-specific ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539115. [PMID: 37205324 PMCID: PMC10187149 DOI: 10.1101/2023.05.02.539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic 'reward' circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. In rats, we previously demonstrated that microglial synaptic pruning also mediates NAc and social development during sex-specific adolescent periods and via sex-specific synaptic pruning targets. In this report, we demonstrate that interrupting microglial pruning in NAc during adolescence persistently dysregulates social behavior towards a familiar, but not novel social partner in both sexes, via sex-specific behavioral expression. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors primarily directed toward a familiar conspecific in both sexes, but in sex-specific ways.
Collapse
Affiliation(s)
- Julia M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L. Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
6
|
Zamboni L, Marchetti P, Congiu A, Giordano R, Fusina F, Carli S, Centoni F, Verlato G, Lugoboni F. ASRS Questionnaire and Tobacco Use: Not Just a Cigarette. A Screening Study in an Italian Young Adult Sample. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062920. [PMID: 33809225 PMCID: PMC8001583 DOI: 10.3390/ijerph18062920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Young adults exhibit greater sensitivity than adults to nicotine reinforcement, and Attention Deficit Hyperactivity Disorder (ADHD) increases the risk for early-onset smoking. We investigated the correlation between ADHD Self-Report Scale (ASRS) scores and smoking, evaluated the prevalence of ADHD symptomatology (not diagnoses) in smokers and non-smokers and its comorbidity with benzodiazepine and gambling addictions. A total of 389 young adults from 14 schools in Northern Italy fill out a survey and the Adult ADHD Self-Report Scale (ASRS). A total of 15.2% of subjects tested positive at the ASRS, which correlated with smoking; moreover, smokers had twice the probability of testing positive at the ASRS. ADHD symptomatology, especially when comorbid with tobacco abuse, is an important condition to monitor because early nicotine exposure could be a gateway for other addictive behaviors.
Collapse
Affiliation(s)
- Lorenzo Zamboni
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-812-8295
| | - Pierpaolo Marchetti
- Diagnostics and Public Health-Unit of Epidemiology and Medical Statistics, University of Verona, 37134 Verona, Italy; (P.M.); (G.V.)
| | - Alessio Congiu
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
| | - Rosaria Giordano
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
| | - Francesca Fusina
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Silvia Carli
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
| | - Francesco Centoni
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
| | - Giuseppe Verlato
- Diagnostics and Public Health-Unit of Epidemiology and Medical Statistics, University of Verona, 37134 Verona, Italy; (P.M.); (G.V.)
| | - Fabio Lugoboni
- Department of Medicine, Addiction Medicine Unit, Verona University Hospital, 37134 Verona, Italy; (A.C.); (R.G.); (S.C.); (F.C.); (F.L.)
| |
Collapse
|
7
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
8
|
Onaolapo OJ, Onaolapo AY. Melatonin, adolescence, and the brain: An insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res 2018; 109:1659-1671. [PMID: 29251845 DOI: 10.1002/bdr2.1171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Melatonin is a neurohormone that is involved in the modulation of a wide range of physiological processes, including maintenance of the circadian rhythm, mediation of photoperiodic information, regulation of the sleep-wake cycle, synchronization of cell physiology, antioxidant defense, and immune-modulation. Although there are reports of increasing use of melatonin in the management of a number of health conditions, evidence exists that is suggestive of deleterious effects of melatonin administration on brain and reproductive development in the prepubertal and pubertal periods that are within the teenage years. In this review, we examine the influences of endogenous and exogenous melatonin on the adolescent brain, with specific reference to its involvement in the evolution of brain functions, brain structure, sleep regulation, and modulation of behaviors in health or disease.
Collapse
Affiliation(s)
- O J Onaolapo
- Behavioral Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - A Y Onaolapo
- Behavioral Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
9
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
10
|
Moe AAK, Scott JG, Burne TH, Eyles DW. Neural changes induced by antipsychotic administration in adolescence: A review of studies in laboratory rodents. J Psychopharmacol 2016; 30:771-94. [PMID: 27413140 DOI: 10.1177/0269881116654776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adolescence is characterized by major remodelling processes in the brain. Use of antipsychotic drugs (APDs) in adolescents has increased dramatically in the last 20 years; however, our understanding of the neurobiological consequences of APD treatment on the adolescent brain has not kept the same pace and significant concerns have been raised. In this review, we examined currently available preclinical studies of the effects of APDs on the adolescent brain. In animal models of neuropsychiatric disorders, adolescent APD treatment appears to be protective against selected structural, behavioural and neurochemical phenotypes. In "neurodevelopmentally normal" adolescent animals, a range of short- and long-term alterations in behaviour and neurochemistry have been reported. In particular, the adolescent brain appears to be sensitive to long-term locomotor/reward effects of chronic atypical APDs in contrast with the outcomes in adults. Long-lasting changes in dopaminergic, glutamatergic and gamma-amino butyric acid-ergic systems induced by adolescent APD administration have been observed in the nucleus accumbens. A detailed examination of other potential target regions such as striatum, prefrontal cortex and ventral tegmental area is still required. Through identification of specific neural pathways targeted by adolescent APD treatment, future studies will expand the current knowledge on long-term neural outcomes which are of translational value.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia Discipline of Psychiatry, School of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
11
|
Brooks JM, O'Donnell P, Frost DO. Olanzapine Treatment of Adolescent Rats Alters Adult D2 Modulation of Cortical Inputs to the Ventral Striatum. Int J Neuropsychopharmacol 2016; 19:pyw034. [PMID: 27207908 PMCID: PMC5091821 DOI: 10.1093/ijnp/pyw034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The striatal dopamine system undergoes vast ontogenetic changes during adolescence, making the brain vulnerable to drug treatments that target this class of neurotransmitters. Atypical antipsychotic drugs are often prescribed to children and adolescents for off-label treatment of neuropsychiatric disorders, yet the long-term impact this treatment has on brain development remains largely unknown. METHODS Adolescent male rats were treated with olanzapine or vehicle for 3 weeks (during postnatal day 28-49) using a dosing condition designed to approximate closely D2 receptor occupancies in the human therapeutic range. We assessed D2 receptor modulation of corticostriatal inputs onto medium spiny neurons in the adult ventral striatum using in vitro whole-cell current clamp recordings. RESULTS The D2/D3 agonist quinpirole (5 µM) enhanced cortically driven medium spiny neuron synaptic responses in slices taken from adult rats treated with vehicle during adolescence, as in untreated adult rats. However, in slices from mature rats treated with olanzapine during adolescence, quinpirole reduced medium spiny neuron activation. The magnitude of decrease was similar to previous observations in untreated, prepubertal rats. These changes may reflect alterations in local inhibitory circuitry, as the GABA-A antagonist picrotoxin (100 µM) reversed the effects of quinpirole in vehicle-treated slices but had no impact on cortically evoked responses in olanzapine-treated slices. CONCLUSIONS These data suggest that adolescent atypical antipsychotic drug treatment leads to enduring changes in dopamine modulation of corticostriatal synaptic function.
Collapse
|
12
|
Yuan M, Cross SJ, Loughlin SE, Leslie FM. Nicotine and the adolescent brain. J Physiol 2015; 593:3397-412. [PMID: 26018031 PMCID: PMC4560573 DOI: 10.1113/jp270492] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse.
Collapse
Affiliation(s)
| | - Sarah J Cross
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | | | - Frances M Leslie
- Departments of Pharmacology
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Smith RF, McDonald CG, Bergstrom HC, Ehlinger DG, Brielmaier JM. Adolescent nicotine induces persisting changes in development of neural connectivity. Neurosci Biobehav Rev 2015; 55:432-43. [PMID: 26048001 DOI: 10.1016/j.neubiorev.2015.05.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023]
Abstract
Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part through D1DR receptors, in a network activated by nicotine. The adolescent nicotine effects reviewed here suggest that modification of late CNS development constitutes a hazard of adolescent nicotine use.
Collapse
Affiliation(s)
- Robert F Smith
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, USA.
| | - Craig G McDonald
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, USA
| | - Hadley C Bergstrom
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 3625 Fishers Lane Room 2N09, Rockville, MD 20814, USA
| | - Daniel G Ehlinger
- Boston Children's Hospital, Department of Anesthesiology, Perioperative, and Pain Medicine, 300 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Xu S, Gullapalli RP, Frost DO. Olanzapine antipsychotic treatment of adolescent rats causes long term changes in glutamate and GABA levels in the nucleus accumbens. Schizophr Res 2015; 161:452-7. [PMID: 25487700 PMCID: PMC4308953 DOI: 10.1016/j.schres.2014.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Atypical antipsychotic drugs (AAPDs) are widely used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of AAPD treatment before the brain is fully developed. Indeed, we and others have previously reported that treatment of adolescent rats with olanzapine (OLA; a widely prescribed AAPD) on postnatal days 28-49, under dosing conditions that approximate those employed therapeutically in humans, causes long-term behavioral and neurobiological perturbations. We have begun to study the mechanisms of these effects. Dopamine (DA) and serotonin (5HT) regulate many neurodevelopmental processes. Currently approved AAPDs exert their therapeutic effects principally through their DAergic activities, although in schizophrenia (SZ) and some other diseases for which AAPDs are prescribed, DAergic dysfunction is accompanied by abnormalities of glutamatergic (GLUergic) and γ-aminobutyric acidergic (GABAergic) transmission. Here, we use proton magnetic resonance spectroscopy ((1)H MRS) to investigate the effects of adolescent OLA administration on GABA and GLU levels. We found that the treatment caused long-term reductions in the levels of both GLU and GABA in the nucleus accumbens (NAc) of adult rats treated with OLA during adolescence. The NAc is a key node in the brain's "reward" system, whose function is also disrupted in schizophrenia. Further research into potential, OLA-induced changes in the levels of GLU and GABA in the NAc and other brain areas, and the dynamics and mechanisms of those changes, are an essential step for devising new adjunct therapies for existing AAPDs and for designing new drugs that increase therapeutic effects and reduce long-term abnormalities when administered to pediatric patients.
Collapse
Affiliation(s)
- Su Xu
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rao P Gullapalli
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Douglas O Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Abstract
The triadic neural systems model is a heuristic tool, which was developed with the goal of providing a framework for neuroscience research into motivated behaviors. Unlike dual models that highlight dynamics between approach systems centered on striatal function and control systems centered on prefrontal cortex, the triadic model also includes an avoidance system, centered on amygdala-related circuits. A first application of this model has been to account for adolescent behavior.
Collapse
Affiliation(s)
- Monique Ernst
- National Institute of Mental Health, 15K North Drive, MSC 2670, 20892 Bethesda, MD, USA.
| |
Collapse
|
16
|
Yetnikoff L, Reichard RA, Schwartz ZM, Parsely KP, Zahm DS. Protracted maturation of forebrain afferent connections of the ventral tegmental area in the rat. J Comp Neurol 2014; 522:1031-47. [PMID: 23983069 PMCID: PMC4217282 DOI: 10.1002/cne.23459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 01/21/2023]
Abstract
The mesocorticolimbic dopamine system has long attracted the interest of researchers concerned with the unique gamut of behavioral and mental health vulnerabilities associated with adolescence. Accordingly, the development of the mesocorticolimbic system has been studied extensively, but almost exclusively with regard to dopaminergic output, particularly in the nucleus accumbens and medial prefrontal cortex. To the contrary, the ontogeny of inputs to the ventral tegmental area (VTA), the source of mesocorticolimbic dopamine, has been neglected. This is not a trivial oversight, as the activity of VTA neurons, which reflects their capacity to transmit information about salient events, is sensitively modulated by inputs. Here, we assessed the development of VTA afferent connections using the β subunit of cholera toxin (Ctβ) as a retrograde axonal tracer in adolescent (postnatal day 39) and early adult (8-9-week-old) rats. After intra-VTA injections of Ctβ, adolescent and early adult animals exhibited qualitatively similar distributions of retrogradely labeled neurons in the sense that VTA-projecting neurons were present at all of the same rostrocaudal levels in all of the same structures in both age groups. However, quantitation of retrogradely labeled neurons revealed that adolescent brains, compared with early adult brains, had significantly fewer VTA-projecting neurons preferentially within an interconnected network of cortical and striatopallidal forebrain structures. These findings provide a novel perspective on the development of the mesocorticolimbic dopamine system and may have important implications for age-dependent specificity in the function of this system, particularly with regard to adolescent impulsivity and mental health vulnerabilities.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Rhett A. Reichard
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zachary M. Schwartz
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Kenneth P. Parsely
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Daniel S. Zahm
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
17
|
Yetnikoff L, Pokinko M, Arvanitogiannis A, Flores C. Adolescence: a time of transition for the phenotype of dcc heterozygous mice. Psychopharmacology (Berl) 2014; 231:1705-14. [PMID: 23572211 DOI: 10.1007/s00213-013-3083-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Stark differences exist between adult (>PND 70) and juvenile (∼PND 21-34) rodents in how DCC (deleted in colorectal cancer) receptors and sensitization to amphetamine interact. In adults, repeated amphetamine upregulates DCC receptor expression selectively in the ventral tegmental area (VTA), an effect that is critical for sensitization. In contrast, amphetamine administered to juveniles downregulates VTA DCC expression. Moreover, whereas adult dcc heterozygous mice fail to sensitize when repeatedly treated with amphetamine, drug treatment during the juvenile period actually abolishes this adult "protective" phenotype. OBJECTIVES We set out to determine whether adolescence (PND ∼35-55) is a period during which: (1) amphetamine-induced alterations in VTA DCC expression switch from downregulation to upregulation; (2) the "protective" phenotype of adult dcc heterozygotes against sensitization becomes evident; and (3) the adult "protective" phenotype of dcc heterozygotes can still be abolished by repeated amphetamine treatment. RESULTS Repeated amphetamine did not significantly alter VTA DCC expression in adolescent rodents when assessed 1 week later. Both wild-type and dcc heterozygous mice exhibited sensitization at this time. Remarkably, wild-type mice, but not dcc heterozygotes, exhibited sensitization when tested during adulthood. CONCLUSIONS Adolescence is a time of transition for dcc heterozygotes as related to sensitization. Our results support the hypothesis that DCC may be a key factor in determining age-dependent individual differences in vulnerability to sensitization. Given that exposure to drugs of abuse during adolescence can have profound consequences for adulthood, the resilience of adult dcc heterozygous mice against adolescent exposure to amphetamine is particularly salient.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
18
|
Chen L, Perez SM, Lodge DJ. An augmented dopamine system function is present prior to puberty in the methylazoxymethanol acetate rodent model of schizophrenia. Dev Neurobiol 2014; 74:907-17. [PMID: 24554310 DOI: 10.1002/dneu.22172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/04/2013] [Accepted: 02/13/2014] [Indexed: 01/28/2023]
Abstract
Schizophrenia is a disease typically associated with an adolescent onset. Although there have been a considerable number of imaging studies investigating the transition to psychosis in prodromal patients, there are relatively few preclinical studies examining potential mechanisms that may contribute to adolescent onset. We have previously demonstrated, in the methylazoxymethanol acetate (MAM) rodent model of schizophrenia, that an enhanced activity within the ventral hippocampus may underlie the dopamine system hyperfunction, suggested to contribute to positive symptoms in patients. Here we demonstrate that the aberrant regulation of dopamine system function, in MAM-treated rats, is present prior to puberty. Furthermore, we now report that while the afferent regulation of ventral tegmental area dopamine neurons (from the hippocampus and pedunculopontine tegmental area) appears intact in preadolescent rats, the behavioral response to alterations in dopamine system function appears to be attenuated in preadolescent rats. Thus, we posit that the pathological alterations underlying psychosis may be present prior to symptom onset and that the "normal" development of the postsynaptic side of the dopamine system may underlie the transition to psychosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Physiology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pathophysiology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | |
Collapse
|
19
|
Nicotine modulation of adolescent dopamine receptor signaling and hypothalamic peptide response. Neuropharmacology 2013; 77:285-93. [PMID: 24157491 DOI: 10.1016/j.neuropharm.2013.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 10/06/2013] [Indexed: 11/23/2022]
Abstract
Adolescence is a sensitive developmental period for limbic and dopamine systems that coincides with the typical age for onset of tobacco use. We have previously shown that a 4-day, low-dose nicotine (0.06 mg/kg) pretreatment enhances locomotor and penile response to the D2-like agonist, quinpirole (0.4 mg/kg), in adolescent but not adult rats. The present study is designed to determine mechanisms underlying this effect. Nicotine enhancement of adolescent quinpirole-induced locomotion was mediated by D2 receptors (D2Rs) since it was blocked by the D2R antagonist, L-741,626, but not by the D3R and D4R antagonists, NGB 2904 and L-745,870. Enhancement of quinpirole-induced erectile response was blocked by both L-741,626 and NGB 2904, indicating involvement of D3Rs. Whereas D2R binding was unaffected by adolescent nicotine pretreatment, effector coupling in the striatum was increased, as determined by GTPγS binding. Nicotine pretreatment enhanced quinpirole-induced c-fos mRNA expression in the hypothalamic paraventricular and supraoptic nuclei in adolescents only. Adolescent nicotine pretreatment enhanced c-fos mRNA expression in corticotropin releasing factor (CRF) cells of the paraventricular nucleus, and enhancement of penile erection was blocked by the CRF-1 receptor antagonist, CP 376,396. These findings suggest that adolescent dopamine and CRF systems are vulnerable to alteration by nicotine. This is the first evidence for a role of CRF in adolescent erectile response.
Collapse
|
20
|
Zuo W, Chen L, Wang L, Ye JH. Cocaine facilitates glutamatergic transmission and activates lateral habenular neurons. Neuropharmacology 2013; 70:180-9. [PMID: 23347950 DOI: 10.1016/j.neuropharm.2013.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/25/2012] [Accepted: 01/10/2013] [Indexed: 12/28/2022]
Abstract
Cocaine administration can be both rewarding and aversive. While much effort has gone to investigating the rewarding effect, the mechanisms underlying cocaine-induced aversion remain murky. There is increasing evidence that the lateral habenula (LHb), a small epithalamic structure, plays a critical role in the aversive responses of many addictive drugs including cocaine. However, the effects of cocaine on LHb neurons are not well explored. Here we show that, in acute brain slices from rats, cocaine depolarized LHb neurons and accelerated their spontaneous firing. The AMPA and NMDA glutamate receptor antagonists, 6, 7-dinitroquinoxaline-2, 3-dione, DL-2-amino-5-phosphono-valeric acid, attenuated cocaine-induced acceleration. In addition, cocaine concentration-dependently enhanced glutamatergic excitation: enhanced the amplitude but reduced the paired pulse ratio of EPSCs elicited by electrical stimulations, and increased the frequency of spontaneous EPSCs in the absence and presence of tetrodotoxin. Dopamine and the agonists of dopamine D1 (SKF 38393) and D2 (quinpirole) receptors, as well as the dopamine transporter blocker (GBR12935), mimicked the effects of cocaine. Conversely, both D1 (SKF83566) and D2 (raclopride) antagonists substantially attenuated cocaine's effects on EPSCs and firing. Together, our results provide evidence that cocaine may act primarily via an increase in dopamine levels in the LHb that activates both D1 and D2 receptors. This leads to an increase in presynaptic glutamate release probability and LHb neuron activity. This may contribute to the aversive effect of cocaine observed in vivo.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
21
|
Huppé-Gourgues F, O'donnell P. D1-NMDA receptor interactions in the rat nucleus accumbens change during adolescence. Synapse 2012; 66:584-91. [DOI: 10.1002/syn.21544] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
|
22
|
Integrating synaptic plasticity and striatal circuit function in addiction. Curr Opin Neurobiol 2011; 22:545-51. [PMID: 22000687 DOI: 10.1016/j.conb.2011.09.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 12/22/2022]
Abstract
Exposure to addictive drugs causes changes in synaptic function within the striatal complex, which can either mimic or interfere with the induction of synaptic plasticity. These synaptic adaptations include changes in the nucleus accumbens (NAc), a ventral striatal subregion important for drug reward and reinforcement, as well as the dorsal striatum, which may promote habitual drug use. As the behavioral effects of drugs of abuse are long-lasting, identifying persistent changes in striatal circuits induced by in vivo drug experience is of considerable importance. Within the striatum, drugs of abuse have been shown to induce modifications in dendritic morphology, ionotropic glutamate receptors (iGluR) and the induction of synaptic plasticity. Understanding the detailed molecular mechanisms underlying these changes in striatal circuit function will provide insight into how drugs of abuse usurp normal learning mechanisms to produce pathological behavior.
Collapse
|