1
|
Wang X, Zhang W. IRL790 modulated striatal D1 neurons synaptic plasticity ameliorating levodopa-induced dyskinesia in mouse. Front Aging Neurosci 2024; 16:1401991. [PMID: 38872625 PMCID: PMC11169859 DOI: 10.3389/fnagi.2024.1401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Objective Levodopa (L-dopa) therapy is the principal pharmacological treatment for Parkinson's disease (PD). Nevertheless, prolonged use of this drug may result in different involuntary movement symptoms caused by the medication, referred to as levodopa-induced dyskinesia (LID). LID is associated with changes in synaptic plasticity of the D1 medium spiny neurons (MSNs) located in the dorsal striatum (dStr). Within the striatum, the amount of Dopamine D3 receptor (D3R) is notably increased in LID, demonstrating colocalization with D1R expression in neurons, and the level of D3R expression is directly related to the intensity of LID. IRL 790, as a D3R antagonist, can ameliorate LID. This study aims to explore if IRL 790 improves LID by regulating the synaptic plasticity of D1+ MSNs in dStr. Methods The electrophysiology and synaptic spine density of D1+ MSNs in dStr were recorded for sham mice, LID mice, and LID mice treated with IRL 790. The regulation of synaptic plasticity in LID D1+ MSNs by IRL 790 was analyzed. Behavioral tests were conducted to confirm the treatment effect of IRL 790 on LID. Results In LID D1+ MSNs, there was persistent abnormal LTP, absence of LTD, and an increase in spontaneous excitatory postsynaptic currents (sEPSCs). IRL 790 treatment restored normal LTP, LTD, and sEPSCs. Treatment with IRL 790 also restored the reduced dendritic spine density in D1+ MSNs of LID mice. IRL790 improved dyskinetic manifestations in LID mice. Conclusion IRL790 ameliorates LID by regulating the synaptic structure and functional plasticity of striatal D1+ MSNs.
Collapse
Affiliation(s)
- Xiaofei Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Guangdong Provincial Key Laboratory on Brain, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
4
|
D3 Receptors and PET Imaging. Curr Top Behav Neurosci 2022; 60:251-275. [PMID: 35711027 DOI: 10.1007/7854_2022_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter encapsulates a short introduction to positron emission tomography (PET) imaging and the information gained by using this technology to detect changes of the dopamine 3 receptor (D3R) at the molecular level in vivo. We will discuss available D3R radiotracers, emphasizing [11C]PHNO. The focus, however, will be on PET findings in conditions including substance abuse, obesity, traumatic brain injury, schizophrenia, Parkinson's disease, and aging. Finally, there is a discussion about progress in producing next-generation selective D3R radiotracers.
Collapse
|
5
|
Chukwueke CC, Nona CN, McPhee MD, Mansouri E, Rubin-Kahana DS, Martinez D, Boileau I, Hendershot CS, Le Foll B. Exploring regulation and function of dopamine D3 receptors in alcohol use disorder. A PET [ 11C]-(+)-PHNO study. Neuropsychopharmacology 2021; 46:2112-2120. [PMID: 34349232 PMCID: PMC8336665 DOI: 10.1038/s41386-021-01095-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Preclinical studies support an important role of dopamine D3 receptors (DRD3s) in alcohol use disorder (AUD). In animals, voluntary alcohol consumption increases DRD3 expression, and pharmacological blockade of DRD3s attenuates alcohol self-administration and reinstatement of alcohol seeking. However, these findings have yet to be translated in humans. This study used positron emission tomography (PET) and [11C]-(+)-PHNO to compare receptor levels in several dopamine D2 receptor (DRD2) and DRD3 regions of interest between AUD subjects in early abstinence (n = 17; 6.59 ± 4.14 days of abstinence) and healthy controls (n = 18). We recruited non-treatment seeking subjects meeting DSM-5 criteria for AUD. We examined the relationship between DRD2/3 levels and both alcohol craving and alcohol motivation/wanting, using a cue reactivity procedure and an intravenous alcohol self-administration (IVASA) paradigm, respectively. [11C]-(+)-PHNO binding levels in AUD subjects were significantly lower than binding in HCs when looking at all DRD2/3 ROIs jointly (Wilk's Λ = .58, F(6,28) =3.33, p = 0.013, η2p = 0.42), however there were no region-specific differences. Binding values demonstrate -12.3% and -16.1% lower [11C]-(+)-PHNO binding in the SMST and SN respectively, though these differences did not withstand Bonferroni corrections. There was a positive association between [11C]-(+)-PHNO binding in the SN (almost exclusively reflective of DRD3) and alpha (lower values reflect higher alcohol demand) in the APT after Bonferroni corrections (r = 0.66, p = 0.0080). This demonstrates that AUD subjects with lower DRD3 levels in the SN exhibit increased demand for alcohol. These results replicate previous findings demonstrating reduced DRD2/3 levels while also supporting a lack of DRD3 upregulation and potential downregulation in early abstinent AUD. Furthermore, the finding that binding in the SN is associated with alcohol demand warrants further examination.
Collapse
Affiliation(s)
- Chidera C Chukwueke
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | | - Matthew D McPhee
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Esmaeil Mansouri
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Dafna S Rubin-Kahana
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Diana Martinez
- Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Christian S Hendershot
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Bahi A, Dreyer JL. Lentiviral-mediated up-regulation of let-7d microRNA decreases alcohol intake through down-regulating the dopamine D3 receptor. Eur Neuropsychopharmacol 2020; 37:70-81. [PMID: 32646740 DOI: 10.1016/j.euroneuro.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that Lethal-7 (let-7) microRNA (miRNA) is involved in a wide range of psychiatric disorders such as anxiety, depression, schizophrenia, and cocaine addiction. However, the exact role of let-7d miRNA in regulating ethanol intake and preference remains to be elucidated. The aim of the present study was to clarify the role of accumbal let-7d in controlling ethanol-related behaviors in adult rats. For this purpose, stereotaxic injections of let-7d-overexpressing lentiviral vectors (LV) were administered bilaterally into the nucleus accumbens (Nacc) of Wistar rats. The ethanol-related behaviors were investigated using the two-bottle choice (TBC) access paradigm, in which the rats had access to 2.5, 5, and 10% ethanol solutions, the grid hanging test (GHT) and ethanol-induced loss-of-righting-reflex (LORR) test. The results showed that intra-accumbally administered let-7d-overexpressing LV significantly decreased ethanol intake and preference without having significant effects on body weight, consumption or preference for tastants (saccharin and quinine) or ethanol metabolism. Furthermore, accumbal let-7d increased resistance to ethanol-induced sedation in the GHT and LORR test. Most importantly, the data showed that the dopamine D3 receptor (D3R) was a candidate target of let-7d In fact, and using real time PCR, let-7d was found to directly target D3R mRNA to decrease its expression. Further analyses proved that D3R expression was negatively correlated with the levels of let-7d and ethanol-related behaviors parameters. Taken together, the data indicating that let-7d impaired ethanol-related behaviors by targeting D3R will open up new exciting possibilities and might provide potential therapeutic evidence for alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Scuppa G, Tambalo S, Pfarr S, Sommer WH, Bifone A. Aberrant insular cortex connectivity in abstinent alcohol-dependent rats is reversed by dopamine D3 receptor blockade. Addict Biol 2020; 25:e12744. [PMID: 30907042 PMCID: PMC7187338 DOI: 10.1111/adb.12744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 12/23/2022]
Abstract
A few studies have reported aberrant functional connectivity in alcoholic patients, but the specific neural circuits involved remain unknown. Moreover, it is unclear whether these alterations can be reversed upon treatment. Here, we used functional MRI to study resting state connectivity in rats following chronic intermittent exposure to ethanol. Further, we evaluated the effects of SB-277011-a, a selective dopamine D3 receptor antagonist, known to decrease ethanol consumption. Alcohol-dependent and control rats (N = 13/14 per group), 3 weeks into abstinence, were administered SB-277011-a or vehicle before fMRI sessions. Resting state connectivity networks were extracted by independent component analysis. A dual-regression analysis was performed using independent component maps as spatial regressors, and the effects of alcohol history and treatment on connectivity were assessed. A history of alcohol dependence caused widespread reduction of the internal coherence of components. Weaker correlation was also found between the insula cortex (IC) and cingulate cortices, key constituents of the salience network. Similarly, reduced connectivity was observed between a component comprising the anterior insular cortex, together with the caudate putamen (CPu-AntIns), and the posterior part of the IC. On the other hand, postdependent rats showed strengthened connectivity between salience and reward networks. In particular, higher connectivity was observed between insula and nucleus accumbens, between the ventral tegmental area and the cingulate cortex and between the VTA and CPu-AntIns. Interestingly, aberrant connectivity in postdependent rats was partially restored by acute administration of SB-277011-a, which, conversely, had no significant effects in naïve rats.
Collapse
Affiliation(s)
- Giulia Scuppa
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
| | - Stefano Tambalo
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
| | - Angelo Bifone
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| |
Collapse
|
8
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
9
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|