1
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Pritz C, Itskovits E, Bokman E, Ruach R, Gritsenko V, Nelken T, Menasherof M, Azulay A, Zaslaver A. Principles for coding associative memories in a compact neural network. eLife 2023; 12:e74434. [PMID: 37140557 PMCID: PMC10159626 DOI: 10.7554/elife.74434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/08/2023] [Indexed: 05/05/2023] Open
Abstract
A major goal in neuroscience is to elucidate the principles by which memories are stored in a neural network. Here, we have systematically studied how four types of associative memories (short- and long-term memories, each as positive and negative associations) are encoded within the compact neural network of Caenorhabditis elegans worms. Interestingly, sensory neurons were primarily involved in coding short-term, but not long-term, memories, and individual sensory neurons could be assigned to coding either the conditioned stimulus or the experience valence (or both). Moreover, when considering the collective activity of the sensory neurons, the specific training experiences could be decoded. Interneurons integrated the modulated sensory inputs and a simple linear combination model identified the experience-specific modulated communication routes. The widely distributed memory suggests that integrated network plasticity, rather than changes to individual neurons, underlies the fine behavioral plasticity. This comprehensive study reveals basic memory-coding principles and highlights the central roles of sensory neurons in memory formation.
Collapse
Affiliation(s)
- Christian Pritz
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eduard Bokman
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Rotem Ruach
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Vladimir Gritsenko
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Tal Nelken
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Mai Menasherof
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Aharon Azulay
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
3
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Distinct effects of volatile and intravenous anaesthetics on presynaptic calcium dynamics in mouse hippocampal GABAergic neurones. Br J Anaesth 2022; 128:1019-1028. [DOI: 10.1016/j.bja.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
|
5
|
Ceto S, Courtine G. Optogenetic Interrogation of Circuits Following Neurotrauma. Front Mol Neurosci 2022; 14:803856. [PMID: 34975403 PMCID: PMC8716760 DOI: 10.3389/fnmol.2021.803856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Biological and engineering strategies for neural repair and recovery from neurotrauma continue to emerge at a rapid pace. Until recently, studies of the impact of neurotrauma and repair strategies on the reorganization of the central nervous system have focused on broadly defined circuits and pathways. Optogenetic modulation and recording methods now enable the interrogation of precisely defined neuronal populations in the brain and spinal cord, allowing unprecedented precision in electrophysiological and behavioral experiments. This mini-review summarizes the spectrum of light-based tools that are currently available to probe the properties and functions of well-defined neuronal subpopulations in the context of neurotrauma. In particular, we highlight the challenges to implement these tools in damaged and reorganizing tissues, and we discuss best practices to overcome these obstacles.
Collapse
Affiliation(s)
- Steven Ceto
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
6
|
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, McGinley A, Varga K, Alford S, Hu YS, Gong LW. TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. eLife 2021; 10:e66709. [PMID: 34569930 PMCID: PMC8516418 DOI: 10.7554/elife.66709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Wenping Li
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Li-Hua Yao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- School of Life Science, Jiangxi Science & Technology Normal UniversityNanchangChina
| | - Badeia Saed
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Yan Rao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Brian S Grewe
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Andrea McGinley
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Kelly Varga
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Biological Sciences, University of North Texas at DallasDallasUnited States
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ying S Hu
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
7
|
GABAergic Inhibition of Presynaptic Ca 2+ Transients in Respiratory PreBötzinger Neurons in Organotypic Slice Cultures. eNeuro 2021; 8:ENEURO.0154-21.2021. [PMID: 34380658 PMCID: PMC8387147 DOI: 10.1523/eneuro.0154-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022] Open
Abstract
GABAergic somatodendritic inhibition in the preBötzinger complex (preBötC), a medullary site for the generation of inspiratory rhythm, is involved in respiratory rhythmogenesis and patterning. Nevertheless, whether GABA acts distally on presynaptic terminals, evoking presynaptic inhibition is unknown. Here, we begin to address this problem by measuring presynaptic Ca2+ transients in preBötC neurons, under rhythmic and non-rhythmic conditions, with two variants of genetically encoded Ca2+ indicators (GECIs). Organotypic slice cultures from newborn mice, containing the preBötC, were drop-transduced with jGCaMP7s, or injected with jGCaMP7f-labeling commissural preBötC neurons. Then, Ca2+ imaging combined with whole-cell patch-clamp or field stimulation was obtained from inspiratory preBötC neurons. We found that rhythmically active neurons expressed synchronized Ca2+ transients in soma, proximal and distal dendritic regions, and punctate synapse-like structures. Expansion microscopy revealed morphologic characteristics of bona fide synaptic boutons of the en passant and terminal type. Under non-rhythmic conditions, we found that bath application of the GABAA receptor agonist muscimol, and local microiontophoresis of GABA, reduced action potential (AP)-evoked and field stimulus-evoked Ca2+ transients in presynaptic terminals in inspiratory neurons and commissural neurons projecting to the contralateral preBötC. In addition, under rhythmic conditions, network rhythmic activity was suppressed by muscimol, while the GABAA receptor antagonist bicuculline completely re-activated spontaneous activity. These observations demonstrate that the preBötC includes neurons that show GABAergic inhibition of presynaptic Ca2+ transients, and presynaptic inhibition may play a role in the network activity that underlies breathing.
Collapse
|
8
|
Sando SR, Bhatla N, Lee EL, Horvitz HR. An hourglass circuit motif transforms a motor program via subcellularly localized muscle calcium signaling and contraction. eLife 2021; 10:59341. [PMID: 34212858 PMCID: PMC8331187 DOI: 10.7554/elife.59341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an ‘hourglass’ circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.
Collapse
Affiliation(s)
- Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Miller Institute, Helen Wills Neuroscience Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eugene Lq Lee
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
9
|
Methods of measuring presynaptic function with fluorescence probes. Appl Microsc 2021; 51:2. [PMID: 33730244 PMCID: PMC7969681 DOI: 10.1186/s42649-021-00051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.
Collapse
|
10
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
11
|
Gasterstädt I, Jack A, Stahlhut T, Rennau LM, Gonda S, Wahle P. Genetically Encoded Calcium Indicators Can Impair Dendrite Growth of Cortical Neurons. Front Cell Neurosci 2020; 14:570596. [PMID: 33192315 PMCID: PMC7606991 DOI: 10.3389/fncel.2020.570596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
A battery of genetically encoded calcium indicators (GECIs) with different binding kinetics and calcium affinities was developed over the recent years to permit long-term calcium imaging. GECIs are calcium buffers and therefore, expression of GECIs may interfere with calcium homeostasis and signaling pathways important for neuronal differentiation and survival. Our objective was to investigate if the biolistically induced expression of five commonly used GECIs at two postnatal time points (days 14 and 22–25) could affect the morphological maturation of cortical neurons in organotypic slice cultures of rat visual cortex. Expression of GCaMP3 in both time windows, and of GCaMP5G and TN-XXL in the later time window impaired apical and /or basal dendrite growth of pyramidal neurons. With time, the proportion of GECI transfectants with nuclear filling increased, but an only prolonged expression of TN-XXL caused higher levels of neurodegeneration. In multipolar interneurons, only GCaMP3 evoked a transient growth delay during the early time window. GCaMP6m and GCaMP6m-XC were quite “neuron-friendly.” Since growth-impaired neurons might not have the physiological responses typical of age-matched wildtype neurons the results obtained after prolonged developmental expression of certain GECIs might need to be interpreted with caution.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Stahlhut
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Brockhaus J, Brüggen B, Missler M. Imaging and Analysis of Presynaptic Calcium Influx in Cultured Neurons Using synGCaMP6f. Front Synaptic Neurosci 2019; 11:12. [PMID: 31057389 PMCID: PMC6477507 DOI: 10.3389/fnsyn.2019.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated calcium channels (VGCCs) is a key step in synaptic transmission that links action potential (AP)-derived depolarization to vesicle release. However, investigation of presynaptic Ca2+ influx by patch clamp recordings is difficult due to the small size of the majority of synaptic boutons along thin axons that hamper clamp control. Genetically encoded calcium indicators (GECIs) in combination with live cell imaging provide an alternative method to study Ca2+ transients in individual presynaptic terminals. The indicator GCaMP6f was developed for fast speed and high sensitivity in detecting Ca2+ transients even in subcellular compartments. We fused GCaMP6f to synaptophysin (synGCaMP6f) to enrich the calcium indicator in presynaptic boutons of transfected primary hippocampal neurons to study presynaptic Ca2+ changes in response to individual APs or short bursts. Changes in fluorescence intensity were evaluated by normalization to control level or, alternatively, by normalization to maximal fluorescence using the calcium ionophore ionomycin. Measurements revealed robust Ca2+ transients with amplitudes that depend on parameters like the number of APs, stimulation frequency or external calcium concentration. Our findings indicate an appropriate sensitivity of synGCaMP6f for studying total presynaptic Ca2+ transients induced by single APs or short bursts that showed little rundown of the response after repeated bursts. Moreover, these recordings are fast enough to even study short-term plasticity like paired pulse facilitation (PPF) and frequency dependence of Ca2+ transients. In addition, synGCaMP6f could be used to dissect the contribution of different subtypes of VGCCs to presynaptic Ca2+ influx. Our results demonstrate that synGCaMP6f allows the reliable analysis of changes in presynaptic calcium concentration at many individual synaptic boutons in parallel and provides the possibility to study the regulation of this important step in synaptic transmission.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Bianca Brüggen
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
13
|
McMahon SM, Jackson MB. An Inconvenient Truth: Calcium Sensors Are Calcium Buffers. Trends Neurosci 2018; 41:880-884. [PMID: 30287084 DOI: 10.1016/j.tins.2018.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
Recent advances in Ca2+ imaging have given neuroscientists a tool to follow the activity of large numbers of individual neurons simultaneously in vivo in the brains of animals as they are presented with sensory stimulation, respond to environmental challenges, and engage in behaviors. The Ca2+ sensors used to transduce changes in cellular Ca2+ into changes in fluorescence must bind Ca2+ to produce a signal. By binding Ca2+, these sensors can act as buffers, often reducing the magnitude of a Ca2+ change severalfold, and producing a proportional slowing of the rates of change. Ca2+ probes can thus distort the patterns of activity they are intended to study and modify ongoing Ca2+ signaling functions. Recognizing these factors will enhance the use of in vivo Ca2+ imaging in the investigation of neural circuit function.
Collapse
Affiliation(s)
- Shane M McMahon
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
14
|
Singh M, Lujan B, Renden R. Presynaptic GCaMP expression decreases vesicle release probability at the calyx of Held. Synapse 2018; 72:e22040. [PMID: 29935099 PMCID: PMC6186185 DOI: 10.1002/syn.22040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Synaptic vesicle (SV) exocytosis is intimately dependent on free local Ca2+ near active zones. Genetically encoded calcium indicators (GECIs) have become an indispensable tool to monitor calcium dynamics during physiological responses, and they are widely used as a proxy to monitor activity in neuronal ensembles and at synaptic terminals. However, GECIs’ ability to bind Ca2+ at physiologically relevant concentration makes them strong candidates to affect calcium homeostasis and alter synaptic transmission by exogenously increasing Ca2+ buffering. In the present study, we show that genetically expressed GCaMP6m modulates SV release probability at the mouse calyx of Held synapse. GCaMP6m expression for approximately three weeks decreased initial SV release for both low‐frequency stimulation and high‐frequency stimulation trains, and slowed presynaptic short‐term depression. However, GCaMP6m does not affect quantal events during spontaneous activity at this synapse. This study emphasizes the careful use of GECIs as monitors of neuronal activity and inspects the role of these transgenic indicators which may alter calcium‐dependent physiological responses.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557
| | - Brendan Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557.,Currently at Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, 89557
| |
Collapse
|