1
|
Vázquez‐Morales L, Aguirre G, Molina‐Jiménez T, Zepeda R, López‐Franco Ó, Flores‐Muñoz M, Juárez‐Portilla C. Ovarian Hormones and Addictive Behaviour Vulnerability: Insights From Preclinical Studies. Addict Biol 2025; 30:e70046. [PMID: 40483695 PMCID: PMC12145796 DOI: 10.1111/adb.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/08/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025]
Abstract
Substance use disorder constitutes a global health challenge. Preclinical investigations into addiction heavily rely on animal models to explore the underlying biological mechanisms of addictive disorders, with a particular emphasis on understanding the etiological factors influencing drug intake. Exploring sex differences across various phases of addiction has revealed a heightened vulnerability in females. This study systematically reviews the impact of ovarian hormones on the consumption of psychoactive substances in rodents, adhering to the PRISMA 2009 protocol. Our findings underscore the significant role of ovarian hormones, particularly oestrogen, in augmenting drug consumption among female rodents. Notably, with heroin, it was observed that progesterone, rather than oestrogen, facilitated increased consumption in female rodents. The susceptibility to addiction influenced by oestrogen is accentuated across distinct phases, and the molecular mechanisms form a complex interplay that significantly influences addictive behaviours. By bringing together these findings, we aim to establish a strong foundation for future studies. This work may guide clinical investigations in developing more effective prevention or treatment strategies that address the unique vulnerabilities of females to substance use disorders.
Collapse
Affiliation(s)
| | - Gisela Aguirre
- Laboratorio de Neurobiología de la Conducta y Procesos Neuroquímicos, Centro de Investigaciones BiomédicasUniversidad VeracruzanaXalapaVeracruzMexico
| | - Tania Molina‐Jiménez
- Laboratorio de Neurobiología de la Conducta y Procesos Neuroquímicos, Centro de Investigaciones BiomédicasUniversidad VeracruzanaXalapaVeracruzMexico
- Facultad de Química Farmacéutica BiológicaUniversidad VeracruzanaXalapaVeracruzMexico
| | - Rossana C. Zepeda
- Laboratorio de Biomedicina Integral y Salud, Centro de Investigaciones BiomédicasUniversidad VeracruzanaXalapaVeracruzMexico
| | - Óscar López‐Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la SaludUniversidad VeracruzanaXalapaVeracruzMexico
| | - Mónica Flores‐Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la SaludUniversidad VeracruzanaXalapaVeracruzMexico
| | - Claudia Juárez‐Portilla
- Laboratorio de Neurobiología de la Conducta y Procesos Neuroquímicos, Centro de Investigaciones BiomédicasUniversidad VeracruzanaXalapaVeracruzMexico
| |
Collapse
|
2
|
Dolgetta A, Johnson M, Fruitman K, Siegel L, Zhou Y, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiol Stress 2022; 17:100431. [PMID: 35535260 PMCID: PMC9076964 DOI: 10.1016/j.ynstr.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.
Collapse
Key Words
- ABC, avidin-biotin complex
- AMPA receptors
- BSA, bovine serum albumin
- CIS, chronic immobilization stress
- CPP, conditioned place preference
- DAB, diaminobenzidine
- DG, dentate gyrus
- DOR, delta opioid receptor
- Drug associative-learning
- Electron microscopy
- GABA, Gamma-amino butyric acid
- GluA1, AMPA glutamate receptor subunit 1
- GluN1, NMDA, glutamate receptor subunit 1
- LTP, long-term potentiation
- MOR, mu opioid receptor
- NMDA receptors
- NMDA, N-methyl-D-aspartate
- NPY, neuropeptide Y
- Oxy, oxycodone
- PARV, parvalbumin
- PB, phosphate buffer
- PFA, paraformaldehyde
- PM, plasma membrane
- Pyramidal cells
- ROI, region of interest
- SLM, stratum lacunosum-moleculare
- SLu, stratum lucidum
- SO, stratum oriens
- SOM, somatostatin
- SR, stratum radiatum
- Sal, saline
- TS, tris-buffered saline
- ir, immunoreactivity
Collapse
Affiliation(s)
- Alexandra Dolgetta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Megan Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Kate Fruitman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Luke Siegel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
3
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
4
|
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA. Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse 2021; 75:e22218. [PMID: 34255372 DOI: 10.1002/syn.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Collapse
Affiliation(s)
- Kyle A Windisch
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Lennox Gergoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sydney Warwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|