1
|
Flores G, Aguilar-Hernández L, García-Dolores F, Nicolini H, Vázquez-Hernández AJ, Tendilla-Beltrán H. Dendritic spine degeneration: a primary mechanism in the aging process. Neural Regen Res 2025; 20:1696-1698. [PMID: 39104099 PMCID: PMC11688554 DOI: 10.4103/nrr.nrr-d-24-00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 08/07/2024] Open
Affiliation(s)
- Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | - Fernado García-Dolores
- Instituto de Ciencias Forenses (INCIFO), Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX). Mexico City, Mexico
| | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
2
|
Kim JE, Min KS, Go J, Park HY, Choi YK, Lee IB, Shin J, Cho HJ, Kim HS, Hwang DY, Oh WK, Kim KS, Lee CH. Water extract of Humulus japonicus improves age‑related cognitive decline by inhibiting acetylcholinesterase activity and the acetylcholine signaling pathway. Mol Med Rep 2025; 31:131. [PMID: 40116124 PMCID: PMC11938412 DOI: 10.3892/mmr.2025.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
The aging process is associated with a decline in certain cognitive abilities, including learning and memory. This age‑related cognitive decline is associated with a reduction in neurogenesis and alterations in the cholinergic system. Humulus japonicus (HJ), an ornamental plant in the family Cannabaceae, has been reported to exert beneficial effects against neurodegenerative pathophysiologies in mouse models of disorders such as Alzheimer's and Parkinson's disease. Despite the increasingly aging populations of numerous societies, no study has yet investigated the effects of HJ on cognitive decline associated with normal aging. The present study therefore aimed to examine the protective potential of HJ water (HJW) extract against age‑related cognitive decline and scopolamine‑induced cognitive impairment. The analyses revealed that the oral administration of HJW markedly improved novel objective recognition and spatial learning in the novel object recognition and Morris water maze tests, respectively, in aged mice. The administration of 600 mg/kg HJW further increased neurogenesis and CA1 thickness in the hippocampi of aged mice. In scopolamine‑induced cognitive impairment, administration of 400 or 600 mg/kg HJW markedly increased novel object recognition performance in scopolamine‑treated mice. The inhibitory effect of HJW on acetylcholinesterase (AChE) and the activation effects of HJW on the calcium/calmodulin‑dependent kinase (CaMK)IIα‑cAMP response element‑binding protein (CREB) and AKT‑glycogen synthase kinase‑3 β (GSK3β) pathways were further demonstrated. Overall, these results indicate that HJW administration improves cognitive function through the regulation of AChE activity and CaMKIIα‑CREB and AKT‑GSK3β pathways.
Collapse
Affiliation(s)
- Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaewon Shin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ju Cho
- NHB Co., Ltd., Seoul 04735, Republic of Korea
| | | | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Li Y, Lu Y, Li J, Li M, Gou H, Sun X, Xu X, Song B, Li Z, Ma Y. Screening of low-toxic zinc oxide nanomaterials and study the apoptosis mechanism of NSC-34 cells. Biotechnol J 2024; 19:e2300443. [PMID: 38403432 DOI: 10.1002/biot.202300443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
With the increasing application of ZnO nanomaterials (ZnO-NMts) in the biomedical field, it is crucial to assess their potential risks to humans and the environment. Therefore, this study aimed to screen for ZnO-NMts with low toxicity and establish safe exposure limits, and investigate their mechanisms of action. The study synthesized 0D ZnO nanoparticles (ZnO NPs) and 3D ZnO nanoflowers (ZnO Nfs) with different morphologies using a hydrothermal approach for comparative research. The ZnO-NMts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Mouse brain neuronal cells (NSC-34) were incubated with ZnO NMts for 6, 12, and 24 h, and the cell morphology was observed using TEM. The toxic effects of ZnO Nfs on NSC-34 cells were studied using CCK-8 cell viability detection, reactive oxygen species (ROS) measurement, caspase-3 activity detection, Annexin V-FITC/PI apoptosis assay, and mitochondrial membrane potential (Δφm) measurement. The results of the research showed that ZnO-NMts caused cytoplasmic vacuolization and nuclear pyknosis. After incubating cells with 12.5 µg mL-1 ZnO-NMts for 12 h, ZnO NRfs exhibited the least toxicity and ROS levels. Additionally, there was a significant increase in caspase-3 activity, depolarization of mitochondrial membrane potential (Δφm), and the highest rate of early apoptosis.This study successfully identified ZnO NRfs with the lowest toxicity and determined the safe exposure limit to be < 12.5 µg mL-1 (12 h). These findings will contribute to the clinical use of ZnO NRfs with low toxicity and provide a foundation for further research on their potential applications in brain disease treatment.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yan Lu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaolin Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaoli Xu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Beibei Song
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Zhiyu Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Flores IO, Treviño S, Díaz A. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen Res 2023; 18:51-56. [PMID: 35799508 PMCID: PMC9241392 DOI: 10.4103/1673-5374.331867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes. During this physiological process, the brain is the most affected organ due to changes in its structural and chemical functions, such as changes in plasticity and decrease in the number, diameter, length, and branching of dendrites and dendritic spines. Likewise, it presents a great reduction in volume resulting from the contraction of the gray matter. Consequently, aging can affect not only cognitive functions, including learning and memory, but also the quality of life of older people. As a result of the phenomena, various molecules with notable neuroprotective capacity have been proposed, which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases. It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models. This review aims to describe the neurotrophic potential of molecules such as resveratrol (3,5,4'-trihydroxystilbene), neurotrophins (brain-derived neurotrophic factor), and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin, cerebrolysin, neuropeptide-12, and rapamycin. Most of these molecules have been evaluated by our research group. Studies suggest that these molecules exert an important therapeutic potential, restoring brain function in aging conditions or models of neurodegenerative diseases. Hence, our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.
Collapse
Affiliation(s)
- Itzel Ortiz Flores
- Department of Health Sciences, School of Medicine, University of the Americas Puebla, Puebla, Mexico
| | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Díaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Aguilar-Hernández L, Vázquez-Hernández AJ, de-Lima-Mar DF, Vázquez-Roque RA, Tendilla-Beltrán H, Flores G. Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. J Chem Neuroanat 2020; 110:101858. [PMID: 32950615 DOI: 10.1016/j.jchemneu.2020.101858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Brain aging is a widely studied process, but due to its complexity, much of its progress is unknown. There are many studies linking memory loss and reduced interneuronal communication with brain aging. However, only a few studies compare young and old animals. In the present study, in male rats aged 3, 6, and 18 months, we analyzed the locomotor activity and also short and long-term memory using the novel object recognition test (NORT), in addition to evaluating the dendritic length and the number of dendritic spines in the prefrontal cortex (PFC) and in the CA1, CA3 and DG regions of the dorsal hippocampus using Golgi-Cox staining. We also analyzed the types of dendritic spines in the aforementioned regions. 6- and 18-month old animals showed a reduction in locomotor activity, while long-term memory deficit was observed in 18-month old rats. At 18 months old, the dendritic length was reduced in all the studied regions. The dendritic spine number was also reduced in layer 5 of the PFC, and the CA1 and CA3 of the hippocampus. The dynamics of dendritic spines changed with age, with a reduction of the mushroom spines in all the studied regions, with an increase of the stubby spines in all the studied regions except from the CA3 region, that showed a reduction. Our data suggest that age causes changes in behavior, which may be the result of morphological changes at the dendrite level, both in their length and in the dynamics of their spines.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Andrea Judith Vázquez-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Diana Frida de-Lima-Mar
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico.
| |
Collapse
|