1
|
Zhou Y, Xie Q, Wang H, Sun H. Chemical approaches for the preparation of ubiquitinated proteins via natural linkages. J Pept Sci 2021; 28:e3367. [PMID: 34514672 DOI: 10.1002/psc.3367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitination is an important posttranslation modification (PTM) that regulates a variety of cellular processes, including protein degradation, DNA repair, and viral infections. In this process, the C-terminal carboxyl group of ubiquitin (Ub) or poly-Ub is attached to the ε-amine of lysine (Lys) side chain of an acceptor protein through an isopeptide bond. Studying a molecular mechanism of ubiquitination and deubiquitination is fundamental for unraveling its precise role in health and disease and hence crucial for drug development. Enzymatic approaches for protein ubiquitination possess limited ability to selectivity install Ub or Ub chain on the desired position of an acceptor protein and often lead to heterogeneous mixtures. In the past decades, chemical protein (semi)synthesis has been proved to be an efficient tool to facilitate site-specific protein ubiquitination, which significantly contributes to decode the Ub signal at molecular and structural levels. In this review, we summarize the synthetic strategies developed for protein ubiquitination, and the achievements to generate monoubiquitinated, di-ubiquitinated, and tetraubiquitinated proteins with native isopeptide and ester bonds.
Collapse
Affiliation(s)
- Yuhui Zhou
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Xie
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huagui Wang
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hao Sun
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
3
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Meledin R, Mali SM, Kleifeld O, Brik A. Activity-Based Probes Developed by Applying a Sequential Dehydroalanine Formation Strategy to Expressed Proteins Reveal a Potential α-Globin-Modulating Deubiquitinase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roman Meledin
- Schulich Faculty of Chemistry; Technion Israel Institute of Technology; Haifa 3200008 Israel
| | - Sachitanand M. Mali
- Schulich Faculty of Chemistry; Technion Israel Institute of Technology; Haifa 3200008 Israel
| | - Oded Kleifeld
- Faculty of Biology; Technion Israel Institute of Technology; Haifa 3200003 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
5
|
Meledin R, Mali SM, Kleifeld O, Brik A. Activity-Based Probes Developed by Applying a Sequential Dehydroalanine Formation Strategy to Expressed Proteins Reveal a Potential α-Globin-Modulating Deubiquitinase. Angew Chem Int Ed Engl 2018. [PMID: 29527788 DOI: 10.1002/anie.201800032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a general and novel semisynthetic strategy for the preparation of ubiquitinated protein-activity-based probes on the basis of sequential dehydroalanine formation on expressed proteins. We applied this approach to construct a physiologically and therapeutically relevant ubiquitinated α-globin probe, which was used for the enrichment and proteomic identification of α-globin-modulating deubiquitinases. We found USP15 as a potential deubiquitinase for the modulation of α-globin, an excess of which aggravates β-thalassemia symptoms. This development opens new opportunities for activity-based-probe design to shed light on the important aspects underlying ubiquitination and deubiquitination in health and disease.
Collapse
Affiliation(s)
- Roman Meledin
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, 3200008, Israel
| | - Sachitanand M Mali
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, 3200008, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
6
|
Gopinath P, Ohayon S, Nawatha M, Brik A. Chemical and semisynthetic approaches to study and target deubiquitinases. Chem Soc Rev 2018; 45:4171-98. [PMID: 27049734 DOI: 10.1039/c6cs00083e] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a key posttranslational modification, which affects numerous biological processes and is reversed by a class of enzymes known as deubiquitinases (DUBs). This family of enzymes cleaves mono-ubiquitin or poly-ubiquitin chains from a target protein through different mechanisms and mode of interactions with their substrates. Studying the role of DUBs in health and diseases has been a major goal for many laboratories both in academia and in industry. However, the field has been challenged by the difficulties in obtaining native substrates and novel reagents using traditional enzymatic and molecular biology approaches. Recent advancements in the synthesis and semisynthesis of proteins made it possible to prepare several unique ubiquitin conjugates to study various aspects of DUBs such as their specificities and structures. Moreover, these approaches enable the preparation of novel activity based probes and assays to monitor DUB activities in vitro and in cellular contexts. Efforts made to bring new chemical entities for the selective inhibition of DUBs based on these tools are also highlighted with selected examples.
Collapse
Affiliation(s)
- Pushparathinam Gopinath
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Shimrit Ohayon
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| |
Collapse
|
7
|
Sun H, Meledin R, Mali SM, Brik A. Total chemical synthesis of ester-linked ubiquitinated proteins unravels their behavior with deubiquitinases. Chem Sci 2018; 9:1661-1665. [PMID: 29675213 PMCID: PMC5887810 DOI: 10.1039/c7sc04518b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
The novel synthetic strategy for preparation of ester linked ubiquitinated proteins was developed. We found that the ester linkage could be cleaved by deubiquitinases with different efficiency relative to the isopeptide-linked substrate.
Ester-linked ubiquitinated proteins have been reported by several groups to be involved in ubiquitin signalling. However, due to the lack of the suitable tools to homogeneously produce such conjugates, their exact physiological roles and biochemical behavior remain enigmatic. Here, we report for the first time on the development of a novel synthetic strategy based on total chemical synthesis of proteins to construct ubiquitinated proteins, where ubiquitin is linked to the substrate via an ester bond. In this study, we prepared ester- and isopeptide-linked ubiquitinated α-globin and examined their relative behaviors with various deubiquitinases. We found that deubiquitinases are able to cleave the ester linkage with different efficiency relative to the isopeptide-linked substrate. These results may indicate that ester-linked ubiquitinated proteins are natural substrates for deubiquitinases.
Collapse
Affiliation(s)
- Hao Sun
- Schulich Faculty of Chemistry , Technion Israel Institute of Technology , Haifa , 3200008 , Israel .
| | - Roman Meledin
- Schulich Faculty of Chemistry , Technion Israel Institute of Technology , Haifa , 3200008 , Israel .
| | - Sachitanand M Mali
- Schulich Faculty of Chemistry , Technion Israel Institute of Technology , Haifa , 3200008 , Israel .
| | - Ashraf Brik
- Schulich Faculty of Chemistry , Technion Israel Institute of Technology , Haifa , 3200008 , Israel .
| |
Collapse
|
8
|
Jbara M, Maity SK, Brik A. Palladium in der chemischen Synthese und Modifizierung von Proteinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
9
|
Jbara M, Maity SK, Brik A. Palladium in the Chemical Synthesis and Modification of Proteins. Angew Chem Int Ed Engl 2017; 56:10644-10655. [DOI: 10.1002/anie.201702370] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
10
|
Mali SM, Singh SK, Eid E, Brik A. Ubiquitin Signaling: Chemistry Comes to the Rescue. J Am Chem Soc 2017; 139:4971-4986. [PMID: 28328208 DOI: 10.1021/jacs.7b00089] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranslational modification of proteins by ubiquitin (Ub), i.e., ubiquitination, mediates a variety of cellular processes, including protein homeostasis, cell cycle, DNA repair, and viral infections. Understanding the molecular mechanism of ubiquitination in these events is the basis for unraveling its precise role in health and disease. However, the inherent complexity of Ub signaling due to the high atomic complexity of Ub conjugates, where Ub is attached to other Ub molecules and to protein substrates in various forms, imposes a major challenge for these studies. In this regard, the enzymatic approaches employed for the preparation of important Ub conjugates have severe limitations to deliver them in high homogeneity and in adequate amounts for the desired study. Recent developments in the area of chemical synthesis and semisynthesis of proteins offer great solutions to the enzymatic limitations and enabling the preparation of various Ub conjugates with precise control over the atomic structure. These conjugates significantly contribute to deciphering Ub signaling at the molecular level, and with the synthetic tools in hand, chemical biologists have become key players in efforts toward understanding the complexity of the Ub code. In this Perspective, we highlight the key contributions of these synthetic approaches and how the development of novel Ub-based reagents is greatly assisting in uncovering unknown aspects of Ub signaling. We also discuss future aspirations to address unresolved questions in this exciting area of research.
Collapse
Affiliation(s)
- Sachitanand M Mali
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Sumeet K Singh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Emad Eid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| |
Collapse
|
11
|
Bacchi M, Fould B, Jullian M, Kreiter A, Maurras A, Nosjean O, Coursindel T, Puget K, Ferry G, Boutin JA. Screening ubiquitin specific protease activities using chemically synthesized ubiquitin and ubiquitinated peptides. Anal Biochem 2017; 519:57-70. [PMID: 27993553 DOI: 10.1016/j.ab.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Ubiquitin, a 76 amino acid protein, is a key component that contributes to cellular protein homeostasis. The specificity of this modification is due to a series of enzymes: ligases, attaching the ubiquitin to a lysine, and deubiquitinases, which remove it. More than a hundred of such proteins are implicated in the regulation of protein turnover. Their specificities are only partially understood. We chemically synthesized ubiquitin, attached it to lysines belonging to the protein sequences known to be ubiquitinated. We chose the model protein "murine double minute 2" (mdm2), a ubiquitin ligase, itself ubiquitinated and deubiquitinated. We folded the ubiquitinated peptides and checked their tridimensional conformation. We assessed the use of these substrates with a series of fifteen deubiquitinases to show the potentiality of such an enzymological technique. By manipulating the sequence of the peptide on which ubiquitin is attached, we were able to detect differences in the enzyme/substrate recognition, and to determine that these differences are deubiquitinase-dependent. This approach could be used to understand the substrate/protein relationship between the protagonists of this reaction. The methodology could be customized for a given substrate and used to advance our understanding of the key amino acids responsible for the deubiquitinase specificities.
Collapse
Affiliation(s)
- Marine Bacchi
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Benjamin Fould
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Magali Jullian
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Aude Kreiter
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Amélie Maurras
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | - Karine Puget
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
12
|
Li YT, Huang YC, Xu Y, Pan M, Li YM. Ubiquitin 7-amino-4-carbamoylmethylcoumarin as an improved fluorogenic substrate for deubiquitinating enzymes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Meledin R, Mali SM, Singh SK, Brik A. Protein ubiquitination via dehydroalanine: development and insights into the diastereoselective 1,4-addition step. Org Biomol Chem 2016; 14:4817-23. [PMID: 27143624 DOI: 10.1039/c6ob00882h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a strategy for site-specific protein ubiquitination using dehydroalanine (Dha) chemistry for the preparation of ubiquitin conjugates bearing a very close mimic of the native isopeptide bond. Our approach relies on the selective formation of Dha followed by conjugation with hexapeptide bearing a thiol handle derived from the C-terminal of ubiquitin. Subsequently, the resulting synthetic intermediate undergoes native chemical ligation with the complementary part of the ubiquitin polypeptide. It has been proposed that the Michael addition step could result in the formation of a diastereomeric mixture as a result of unselective protonation of the enolate intermediate. It has also been proposed that the chiral protein environment may influence such an addition step. In the protein context these questions remain open and no experimental evidence was provided as to how such a protein environment affects the diastereoselectivity of the addition step. As was previously proposed for the conjugation step on protein bearing Dha, the isopeptide bond formation step in our study resulted in the construction of two protein diastereomers. To assign the ratio of these diastereomers, trypsinization coupled with high-pressure liquid chromatography analysis were performed. Moreover, the obtained peptide diastereomers were compared with identical synthetic peptides having defined stereogenic centers, which enabled the determination of the configuration of the isopeptide mimic in each diastereomer. Our study, which offers a new method for isopeptide bond formation and protein ubiquitination, gives insights into the parameters that affect the stereoselectivity of the addition step to Dha for chemical protein modifications.
Collapse
Affiliation(s)
- Roman Meledin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008 Israel.
| | | | | | | |
Collapse
|
14
|
Hameed DS, Sapmaz A, Ovaa H. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction. Bioconjug Chem 2016; 28:805-815. [PMID: 27077728 DOI: 10.1021/acs.bioconjchem.6b00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.
Collapse
Affiliation(s)
- Dharjath S Hameed
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aysegul Sapmaz
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center , Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|