1
|
Li M, Huang XL, Zhang ZY, Wang Z, Wu Z, Yang H, Shen WJ, Cheng YZ, You SL. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J Am Chem Soc 2024; 146:16982-16989. [PMID: 38870424 DOI: 10.1021/jacs.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuo-Yu Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhiping Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhuo Wu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
2
|
Zhang Z, Li X, Song Q, Li Y, Tian X, Ali S, Yao Y, Li P, Wang Z, Zheng H. Asymmetric Total Synthesis of (+)-Chuanxiongnolide L1 via a Stereoselective Oxidative Dearomatization/Diels-Alder Strategy. Org Lett 2024; 26:2928-2933. [PMID: 38551465 DOI: 10.1021/acs.orglett.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The first asymmetric total synthesis of chuanxiongnolide L1 was achieved in 16 steps and 1.9% overall yield by employing a bioinspired chiral auxiliary strategy. The key steps involving asymmetric oxidative dearomatization of chiral amino ether and subsequent asymmetric Diels-Alder reaction of the resulting masked chiral ortho-benzoquinone were adopted.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Qingyan Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuerong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiqing Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Sajjad Ali
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuan Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengshen Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
3
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Jin S, Zhao X, Ma D. Divergent Total Syntheses of Napelline-Type C20-Diterpenoid Alkaloids: (-)-Napelline, (+)-Dehydronapelline, (-)-Songorine, (-)-Songoramine, (-)-Acoapetaldine D, and (-)-Liangshanone. J Am Chem Soc 2022; 144:15355-15362. [PMID: 35948501 DOI: 10.1021/jacs.2c06738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The napelline-type alkaloids possess an azabicyclo[3.2.1]octane moiety and an ent-kaurane-type tetracyclic skeleton (6/6/6/5) along with varied oxidation patterns embedded in the compact hexacyclic framework. Herein, we disclose a divergent entry to napelline-type alkaloids that hinges on convergent assembly of the ent-kaurane core using a diastereoselective intermolecular Cu-mediated conjugate addition and subsequent intramolecular Michael addition reaction as well as rapid construction of the azabicyclo[3.2.1]octane motif via an intramolecular Mannich cyclization. The power of this strategy has been demonstrated through efficient asymmetric total syntheses of eight napelline-type alkaloids, including (-)-napelline, (-)-12-epi-napelline, (+)-dehydronapelline, (+)-12-epi-dehydronapelline, (-)-songorine, (-)-songoramine, (-)-acoapetaldine D, and (-)-liangshanone.
Collapse
Affiliation(s)
- Shicheng Jin
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
5
|
Yu K, Yao F, Zeng Q, Xie H, Ding H. Asymmetric Total Syntheses of (+)-Davisinol and (+)-18-Benzoyldavisinol: A HAT-Initiated Transannular Redox Radical Approach. J Am Chem Soc 2021; 143:10576-10581. [PMID: 34240855 DOI: 10.1021/jacs.1c05703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first and asymmetric total syntheses of two C11-oxygenated hetisine-type diterpenoid alkaloids, namely, (+)-davisinol and (+)-18-benzoyldavisinol, is described. The concise synthetic approach features a HAT-initiated transannular redox radical cyclization, an ODI-Diels-Alder cycloaddition, and an acylative kinetic resolution. By incorporating an efficient late-stage assembly of the azabicycle, our strategy would streamline the synthetic design of C20-diterpenoid alkaloids and pave the way for their modular syntheses.
Collapse
Affiliation(s)
- Kuan Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qingrui Zeng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang Q, Yang Z, Wang Q, Liu S, Zhou T, Zhao Y, Zhang M. Asymmetric Total Synthesis of Hetidine-Type C 20-Diterpenoid Alkaloids: (+)-Talassimidine and (+)-Talassamine. J Am Chem Soc 2021; 143:7088-7095. [PMID: 33938219 DOI: 10.1021/jacs.1c01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we report the first asymmetric total synthesis of (+)-talassimidine and (+)-talassamine, two hetidine-type C20-diterpenoid alkaloids. A highly regio- and diastereoselective 1,3-dipolar cycloaddition of an azomethine ylide yielded a chiral tetracyclic intermediate in high enantiopurity, thus providing the structural basis for asymmetric assembly of the hexacyclic hetidine skeleton. In this key step, the introduction of a single chiral center induces four new continuous chiral centers. Another key transformation is the dearomative cyclopropanation of the benzene ring and subsequent SN2-like ring opening of the resultant cyclopropane ring with water as a nucleophile, which not only establishes the B ring but also precisely installs the difficult-to-achieve equatorial C7-OH group.
Collapse
Affiliation(s)
- Quanzheng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yankun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Drummond GJ, Grant PS, Brimble MA. ent-Atisane diterpenoids: isolation, structure and bioactivity. Nat Prod Rep 2021; 38:330-345. [PMID: 32716458 DOI: 10.1039/d0np00039f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2020 ent-Atisane diterpenoids are a class of over 150 members with diverse structures and valuable bioactivities. These compounds share a curious history in which the synthesis of the archetypal member preceded its isolation from natural sources. In this review, we provide a comprehensive summary of the isolation, structure, and bioactivity of ent-atisane diterpenoids from their discovery in 1965 to the present day.
Collapse
Affiliation(s)
- Grace J Drummond
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Phillip S Grant
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre of Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
8
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
9
|
Finkbeiner P, Murai K, Röpke M, Sarpong R. Total Synthesis of Terpenoids Employing a "Benzannulation of Carvone" Strategy: Synthesis of (-)-Crotogoudin. J Am Chem Soc 2017; 139:11349-11352. [PMID: 28763218 PMCID: PMC6309435 DOI: 10.1021/jacs.7b06823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carvone is a sustainable and readily available starting material for organic synthesis. Herein, we present the syntheses of various natural product scaffolds that rely on a novel benzannulation involving the α-methyl group (C-10) of carvone to afford a versatile tetralin. The utility of our synthetic approach is highlighted by its application to a short synthesis of the ent-3,4-seco-atisane diterpenoid (-)-crotogoudin. The 13-step enantiospecific synthesis features a regioselective double oxidative dearomatization, a Diels-Alder cycloaddition with ethylene gas (to construct the bicyclo[2.2.2]octane framework), and a final acid-mediated lactonization. The versatility of this benzannulation strategy is demonstrated by its utility in the preparation of the carbon skeleton of ent-3,4-seco-abietane diterpenoids using an intramolecular oxidative dearomatization.
Collapse
Affiliation(s)
- Peter Finkbeiner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Michael Röpke
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|