1
|
Dyguda M, Przydacz A, Albrecht Ł. Dearomative, aminocatalytic formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines. Chem Commun (Camb) 2023; 59:12903-12906. [PMID: 37819685 DOI: 10.1039/d3cc03946c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In the manuscript the application of dearomative formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines is described. The developed approach utilizes aminocatalytic activation of 2-alkyl-3-furfurals that proceeds via formation of the dearomatized dienamine intermediate. Initially obtained cycloadducts have been subjected to subsequent transformations providing access to tetrahydrofuropyridines or functionalized cinnamates. The mechanism of the process has been confirmed by DFT calculations.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Artur Przydacz
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Łukasz Albrecht
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| |
Collapse
|
2
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
Mateo LM, Sagresti L, Luo Y, Guldi DM, Torres T, Brancato G, Bottari G. Expanding the Chemical Space of Tetracyanobuta-1,3-diene (TCBD) through a Cyano-Diels-Alder Reaction: Synthesis, Structure, and Physicochemical Properties of an Anthryl-fused-TCBD Derivative. Chemistry 2021; 27:16049-16055. [PMID: 34494672 PMCID: PMC9292653 DOI: 10.1002/chem.202103079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Tetracyanobuta-1,3-diene (TCBD) is a powerful and versatile electron-acceptor moiety widely used for the preparation of electroactive conjugates. While many reports addressing its electron-accepting capability have appeared in the literature, significantly scarcer are those dealing with its chemical modification, a relevant topic which allows to broaden the chemical space of this interesting functional unit. Here, we report on the first example of a high-yielding cyano-Diels-Alder (CDA) reaction between TCBD, that is, where a nitrile group acts as a dienophile, and an anthryl moiety, that is, acting as a diene. The resulting anthryl-fused-TCBD derivative, which structure was unambiguously identified by X-ray diffraction, shows high thermal stability, remarkable electron-accepting capability, and interesting electronic ground- and excited-state features, as characterized by a thorough theoretical, electrochemical, and photophysical investigation. Moreover, a detailed kinetic analysis of the intramolecular CDA reaction transforming the anthryl-TCBD-based reactant into the anthryl-fused-TCBD product was carried out at different temperatures.
Collapse
Affiliation(s)
- Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
| | - Luca Sagresti
- Scuola Normale Superiore and CSGIPiazza dei Cavalieri 756126PisaItaly
- Istituto Nazionale di Fisica NucleareLargo Pontecorvo 356100PisaItaly
| | - Yusen Luo
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Tomas Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Giuseppe Brancato
- Scuola Normale Superiore and CSGIPiazza dei Cavalieri 756126PisaItaly
- Istituto Nazionale di Fisica NucleareLargo Pontecorvo 356100PisaItaly
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
4
|
Fernando EHN, Cortes Vazquez J, Davis J, Luo W, Nesterov VN, Wang H. Can Primary Arylamines Form Enamine? Evidence, α-Enaminone, and [3+3] Cycloaddition Reaction. J Org Chem 2021; 86:14617-14626. [PMID: 34610241 DOI: 10.1021/acs.joc.1c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of enamine from primary arylamines was detected and confirmed by nuclear magnetic resonance spectroscopy. The presence of a radical quencher, e.g., (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl, was found to be essential for the detection of enamine formation. A direct synthesis of α-enaminones from primary arylamines and ketones was also developed. Mechanistic investigation of α-enaminone formation suggests that an amine radical cation generated through O2 singlet energy transfer was involved in initiating α-enaminone formation. The reactivity and utility of α-enaminones were explored with a [3+3] cycloaddition reaction of enones affording dihydropyridines in good yields (58-85%). α-Enaminones displayed a set of reactivities that is different from that of enamines. The knowledge gained in this work advances our basic understanding of organic chemistry, providing insights and new opportunities in enamine catalysis.
Collapse
Affiliation(s)
- E H Nisala Fernando
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jose Cortes Vazquez
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Weiwei Luo
- School of Chemistry and Food Engineering, University of Science and Technology, Changsha 410114, China
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
5
|
Briou B, Améduri B, Boutevin B. Trends in the Diels-Alder reaction in polymer chemistry. Chem Soc Rev 2021; 50:11055-11097. [PMID: 34605835 DOI: 10.1039/d0cs01382j] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Diels-Alder (DA) reaction is regarded as quite a useful strategy in organic and macromolecular syntheses. The reversibility of this reaction and the advent of self-repair technology, as well as other applications in controlled macromolecular architectures and crosslinking, have strongly boosted the research activity, which is still attracting a huge interest in both academic and industrial research. The DA reaction is a simple and scalable toolbox. Though it is well-established that furan/maleimide is the most studied diene/dienophile couple, this perspective article reports strategies using other reversible systems with deeper features on other types of diene/dienophile pairs being either petro-sourced (cyclopentadiene, anthracene) or bio-sourced (muconic and sorbic acids, myrcene and farnesene derivatives, eugenol, cardanol). This review is composed of four sections. The first one briefly recalls the background on the DA reactions involving cyclodimerizations, dienes, and dienophiles, parameters affecting the reaction, while the second part deals with the furan/maleimide reaction. The third one deals with petro-sourced and bio-sourced (or products becoming bio-sourced) reactants involved in DA reactions are also listed and discussed. Finally, the authors' opinion is given on the potential future of the crosslinking-decrosslinking reaction, especially regarding the process (e.g., key temperatures of decrosslinking) or possibly monocomponents. It presents both fundamental and applied research on the DA reaction and its applications.
Collapse
Affiliation(s)
- Benoit Briou
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bruno Améduri
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bernard Boutevin
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
6
|
Vinogradov MG, Turova OV, Zlotin SG. Catalytic Asymmetric Aza‐Diels‐Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen‐Containing Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
7
|
Heravi MM, Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 2020; 10:44247-44311. [PMID: 35557843 PMCID: PMC9092475 DOI: 10.1039/d0ra09198g] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical applications and their selected synthetic pathways. It is worth mentioning that the reported examples are actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic information has been extracted from both scientific journals and the wider patent literature.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
8
|
|
9
|
Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Heravi MM, Zadsirjan V, Kouhestanian E, AlimadadiJani B. Electrochemically Induced Diels-Alder Reaction: An Overview. CHEM REC 2019; 20:273-331. [PMID: 31423739 DOI: 10.1002/tcr.201900018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/23/2019] [Indexed: 12/26/2022]
Abstract
One of the most important name reactions in organic chemistry, is the Diels-Alder cycloaddition reaction. It is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile to construct a substituted cyclohexene derivative. It is the stereotypical example of a pericyclic reaction with a concerted mechanism. In synthesis, the use of electricity instead of stoichiometric amounts of oxidant or reducing agents is definitely appealing for economic, ecological and selective, reasons. In this review, we try to underscore the combination of the electrosynthesis with Diels-Alder cycloaddition reaction to establish of a powerful synthetic tool which may encourage synthetic organic chemists to use it in the future.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Elham Kouhestanian
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Behnoush AlimadadiJani
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| |
Collapse
|