1
|
Zhao Y, Cheng L, Wang C, Liu M, Liu A, Xu L. Amplified detection of β-glucuronidase activity based on cascade catalysis. Talanta 2025; 293:128027. [PMID: 40157156 DOI: 10.1016/j.talanta.2025.128027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
β-Glucuronidase (β-GLU) plays a pivotal role in disease progression and serves both as a biomarker and a therapeutic target. Novel strategies for β-GLU detection are highly desirable. Here, we present a cascade catalytic strategy for amplified detection of β-GLU activity. Using 8-hydroxyquinoline-β-D-glucuronide (8-HQG) as the substrate, β-GLU enzymatically releases 8-hydroxyquinoline (8-HQ), which effectively activates the catalytic activity of Co2+, thereby facilitating the H2O2-dependent oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This strategy enables sensitive colorimetric detection of β-GLU activity with a limit of detection (LOD) of 0.022 U/mL. The results demonstrate the potential of our cascade catalytic system not only for β-GLU detection but also for inhibitor selection and enhancing treatment for related diseases.
Collapse
Affiliation(s)
- Yong Zhao
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lu Cheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Min Liu
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430205, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Moghaddasfar A, Ziarani GM, Badiei A. Upcycling waste zirconia block dental powders: towards a facile and highly selective on-off optical probe for sensing Zn 2+ and Hg 2+ in aqueous media. RSC Adv 2025; 15:16164-16174. [PMID: 40376663 PMCID: PMC12079363 DOI: 10.1039/d5ra01728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Upcycling waste materials to produce high-value-added substances can pave the way for sustainable development. Waste block dental powders (WBDPs), a valuable source of zirconia, represent a significant portion of dentistry wastage and are valuable candidates for upcycling. Herein, a highly selective and facile optical probe based on upcycled WBDPs with surface interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) was developed to produce a powerful solid-state optical chemo-probe for sensing Zn2+ and Hg2+ in aqueous media. ZrO2-8-HQS provided high selectivity for sensing Zn2+ over a wide range of cations and anions, with a remarkable fluorescence intensity enhancement (λ em = 517 nm) over a wide pH range (4-10). The as-prepared optical probe had a remarkable sensitivity, with a limit of detection (LoD) of 5.2 μM for Zn2+. The fluorescence of the Zn2+ probe complex was quenched in the presence of aqueous solutions of Hg2+, allowing the as-prepared chemo-probe to sense Hg2+ in aqueous media (LoD of 0.8 μM for Hg2+). The Stern-Volmer equation revealed static and dynamic mechanisms in the quenching process, and the (K S × K D) and (K S + K D) values were 0.0012 and 0.0076, respectively.
Collapse
Affiliation(s)
| | | | - Alireza Badiei
- School of Chemistry, College of Sciences, University of Tehran Iran
| |
Collapse
|
3
|
Nehra N, Kaushik R, Kanika, Rahul, Khan R. Benzothiazole-Quinoline-Based Fluorescent Probe for Fe 3+ and its Applications in Environmental and Biological Samples. J Fluoresc 2024:10.1007/s10895-024-03827-1. [PMID: 39002051 DOI: 10.1007/s10895-024-03827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Due to the its high abundance, iron ion contamination and toxicity is one of the most challenging issue for living beings. Although, iron is extremenly important for several body functions, excess amount of iron in the body can also be fatal. In last century, rapid industrialization, iron extraction and mismanagement of industrial waste disposal leads to iron contamination in water bodies. Therefore, versatile iron sensors needs to be develop which can be employed for detection in biological as well as real water samples. 8-hydroxyquinoline is well-known for its strong affinity towards transition metals including Fe3+. In this regard, we have synthesised benzothiazole-quinoline derived 1,2,3- triazole (4HBTHQTz), in which 4-(benzo[d]thiazol-2-yl)phenolic (4-HBT) group acts as a fluorophore. 4HBTHQTz showed high fluorescence and induced a selective decrease in fluorescence with Fe3+ at 380 nm (λex. = 320 nm). The detection limit of 4HBTHQTz with Fe3+ is calculated as 0.64 μM, which is lower than the WHO recommended limit in drinking water. 4HBTHQTz works over the 5-8 pH range and has shown promising results for quantitative detection of Fe3+ in water samples collected from tap, river and seawater. 4HBTHQTz can also detect the Fe3+ in biological samples which is confirmed by fluorescence cell imaging using L929 mouse fibroblast cells. Overall, 4HBTHQTz showed advantages such as high selectivity, quick detection, and good limit of detection (LOD) for Fe3+.
Collapse
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNIT), JLN Marg, Jaipur, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Shenbagapushpam M, Ashwin BCMA, Mareeswaran PM, Yuvaraj P, Kodirajan S. Active Hydrogen Free, Z-Isomer Selective Isatin Derived "Turn on" Fluorescent Dual Anions Sensor. J Fluoresc 2024:10.1007/s10895-024-03762-1. [PMID: 38896304 DOI: 10.1007/s10895-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
An efficient and anions fluorescence "on-off" sensor of 1-(prop-2-yn-1-yl)-3-(quinolin-3-ylimino)indolin-2-one (PQI) has been developed for the selective sensing of dual anions of F- and NO3- ions in aqueous medium. Active hydrogen and Lewis acidic binding sites free, Z- isomer of isatin based π-conjugated quinoline exhibited excellent sensing activity against F- and NO3- ions in UV light. The fluorescence turns on the process accomplished via the PET "on-off" mechanism. The interaction between probe molecule and anions is thought to be a non-covalent interaction of the low electron density covalently bonded N-methylene moiety of propargyl isatin (-N-CH2-) of probe molecule with F- ion and the terminal acidic proton of propargyl group of isatin (-C≡C-H) with NO3- ions. The modes of anions binding with PQI and plausible mechanisms are proposed by 1H and 13C NMR titrations. The selectivity of anions sensing may be offered by the bucked structure of the Z-isomer. The calculated association constant values for PQI and F- and NO3- are ions 2.5 × 104 M-1 and 2.2 × 103 M-1, respectively, indicating strong binding interaction between the PQI and anions. The association nature of anions and probes was analyzed by a Jobs plot and the finding indicates both F- and NO3- ions are in 1:1 complexation with PQI. The limit of detection (LOD) of the probe with F- and NO3- ions is calculated and is to be 6.91 × 10-7 M and 9.93 × 10-7 M, respectively. The proposed PQI fluorophore possesses a low limit of detection (LOD) for both F- and NO3- ions which is within the WHO prescribed detection limit.
Collapse
Affiliation(s)
- Muthumanickam Shenbagapushpam
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
- Department of Chemistry, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India
| | | | | | - Paneerselvam Yuvaraj
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Selvakumar Kodirajan
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India.
| |
Collapse
|
5
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
6
|
Takale KD, Watwe VS, Walimbe PC, Kulkarni PS, Kulkarni SD. Cu(II)-Metallized Three-Layered Cu-8HQ Complex with Hierarchical Crystallite Morphologies Synthesized via Reaction-Diffusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2641-2651. [PMID: 36779677 DOI: 10.1021/acs.langmuir.2c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Self-organization of regular band patterns of the precipitate via a reaction-diffusion (RD) framework is called Liesegang phenomenon. This non-equilibrium system is emerging as an efficient method for synthesizing materials with unique morphologies that may have desired properties. The formation of continuous precipitation inside a band with poor control over the shape and size of sparingly soluble salts has been well documented. However, only a few reports on forming organic-inorganic bonds are available. In the present work, we demonstrate the formation of 2D frameworks of bis-(8-hydroxyquinoline) copper(II) in the agar gel via RD. The macroscopic particles were dumbbell-shaped, with aspect ratios ranging from 2.7 (inner bands) to 0.7 (outer bands). The particles were composed of ribbon-shaped crystallites at the microscopic level, each with three layers of parallelogram prismatic monoclinic sheets stacked over one another, which could easily be exfoliated. The powder X-ray diffraction patterns at low angles and the surface areas of the crystallites indicated the formation of metal-organic frameworks. It was observed that the sizes of the particles could be tuned by controlling the extent of diffusion using reactant concentrations. Since such heterostructures have energy storage capacity, the cyclic voltammograms of the unexfoliated and exfoliated materials showed that they fall in the pseudocapacitor category with potential application as the electrode material. The frameworks were further characterized by techniques such as optical and electron microscopy, X-ray diffraction, IR spectroscopy, and UV-visible spectrophotometry.
Collapse
Affiliation(s)
- Kiran D Takale
- Post Graduate and Research Center, Department of Chemistry, S.P.Mandali's Sir Parashurambhau College [Savitribai Phule Pune University (formerly University of Pune)], Tilak Road, Maharashtra, Pune 411 030, India
| | - Varuna S Watwe
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College [Savitribai Phule Pune University (formerly University of Pune)], Karve Road, Pune 411 004, India
| | - Prasad C Walimbe
- Post Graduate and Research Center, Department of Chemistry, S.P.Mandali's Sir Parashurambhau College [Savitribai Phule Pune University (formerly University of Pune)], Tilak Road, Maharashtra, Pune 411 030, India
| | - Preeti S Kulkarni
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College [Savitribai Phule Pune University (formerly University of Pune)], Karve Road, Pune 411 004, India
| | - Sunil D Kulkarni
- Post Graduate and Research Center, Department of Chemistry, S.P.Mandali's Sir Parashurambhau College [Savitribai Phule Pune University (formerly University of Pune)], Tilak Road, Maharashtra, Pune 411 030, India
| |
Collapse
|
7
|
Lu D, Chen S, Tang N, Yin SF, Kambe N, Qiu R. Copper-Catalyzed Cyclization of 2-Alkynylanilines to Give 2-Haloalkoxy-3-alkyl(aryl)quinolines. Org Lett 2023; 25:676-681. [PMID: 36682056 DOI: 10.1021/acs.orglett.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein we describe a method to produce 2-haloalkoxy-3-substituted quinolines via the cyclization of 2-alkynylanilines with TMSCF3 and THF. This synthetic method uses inexpensive and easy-to-handle TMSCF3 and employs a commercially available CuI catalyst to transform a broad range of 2-alkynylanilines into versatile 2-difluoromethoxy-3-substituted quinolines and 2-iodoalkoxy-3-substituted quinolines with excellent chemoselectivity.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Songhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Kang M, Jiang S, Liu Y, Wei K, Liu P, Yang X, Pei M, Zhang G. A new “off-on-off” Schiff base from quinoline and thiophene as a fluorescent sensor for sequential monitoring Ga3+ and Pd2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Ali Drweesh E, Vilková M, Elnagar MM, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XVIII: Design, synthesis and crystal structural investigations of ionic heteroleptic Pd(II) complexes based on halo and nitro 8-hydroxyquinoline derivatives. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang D, Li SJ, Cao W, Wang Z, Ma Y. ESIPT-Active 8-Hydroxyquinoline-Based Fluorescence Sensor for Zn(II) Detection and Aggregation-Induced Emission of the Zn(II) Complex. ACS OMEGA 2022; 7:18017-18026. [PMID: 35664592 PMCID: PMC9161411 DOI: 10.1021/acsomega.2c01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
A D-π-A type quinoline derivative, 2-(((4-(1, 2, 2-triphenylvinyl)phenyl)imino)methyl)quinolin-8-ol (HL), was synthesized and structurally characterized. The five-membered ring formed by the O-H···N hydrogen bond in HL contributed to the excited-state intramolecular proton transfer (ESIPT) behavior of HL, which was further verified by theoretical computations. Upon coordination with Zn2+, the hydroxyl proton in HL was removed, resulting in the inhibition of ESIPT. In the meanwhile, the formed Zn 2 L 4 complex displayed aggregation-induced emission (AIE) character in THF/H2O mixtures, which is conducive to the fluorescence enhancement in aqueous media. Structure analysis suggested that the origin of the AIE characteristic was attributed to restriction of intramolecular rotations along with the formation of J-aggregates. Based on ESIPT coupled with AIE, HL could recognize Zn(II) in aqueous media via an orange fluorescence turn-on mode. Benefitting from the AIE property, chemosensor HL was successfully applied to fabricate test strips for rapid sensing of Zn(II) ions.
Collapse
Affiliation(s)
- Dan Wang
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Shao-Jie Li
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Wei Cao
- Scientific
Instrument Center, Shanxi University, Taiyuan 030006, People’s Republic of China
| | - Zheng Wang
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Yangmin Ma
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| |
Collapse
|
11
|
Abstract
A simple and efficient protocol for the synthesis of the previously unknown 2-(2-(4-methoxyphenyl)furo[3,2-h]quinolin-3-yl)acetic acid was elaborated. The suggested method is based on the telescoped multicomponent reaction of 8-hydroxyquinoline, 4-methylglyoxal, and Meldrum’s acid. The studied process includes the initial interaction of the starting compounds in MeCN followed by intramolecular cyclization to the target product in refluxing acetic acid. The advantage of this approach is the application of readily available starting materials, atom economy, and a simple work-up procedure. The structure of the synthesized furylacetic acid derivative was proven by 1H, 13C, 2D-NMR, IR spectroscopy, and high-resolution mass spectrometry.
Collapse
|
12
|
Synthesis, bioinformatics and biological evaluation of novel pyridine based on 8-hydroxyquinoline derivatives as antibacterial agents: DFT, molecular docking and ADME/T studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|