1
|
Huang Y, Yi R, Qiang Y, Xie B, Zhang M, Liang S, Chen J, Wang S, Chen L. Bio-Inspired 2D Nanochannels With Adaptive Gating for Intelligent Molecular Sieving. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500266. [PMID: 39989193 DOI: 10.1002/smll.202500266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Intelligent membranes with programmable permeance and precise sieving performance are in high demand for complex water treatment scenarios. Herein, a bioinspired membrane featuring intelligent adaptive 2D nanochannels with outstanding molecule sieving performance is reported. In particular, a protein-mimetic 2D nanochannel with pH-responsive characteristics is constructed by introducing sodium alginate (SA) molecular chains into GO laminates. The conformational transformation of SA chains under varying pH conditions enables adaptive regulation of the 2D channel size and selective molecular transport. The resulting GO-SA membrane possesses outstanding water permeance up to 122.67 L m-2 h-1 bar-1, along with a high sieving response factor of 50.12. Besides, it is discovered that the introduction of multivalent Ca2+ ions can stabilize the membrane structure, thereby "locking" the pH-responsive behavior. Based on this, the water treatment system is designed can not only realize the multistage separation of dye molecules, but also enable the recovery and recycling of acid and alkali. This strategy provides insights for designing intelligent membranes with gated responses.
Collapse
Affiliation(s)
- Yi Huang
- College of Opto-Mechanical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruobing Yi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Yu Qiang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Binyou Xie
- College of Opto-Mechanical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Zhang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Shanshan Liang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Junlang Chen
- College of Opto-Mechanical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shuai Wang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Liang Chen
- College of Opto-Mechanical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale Hydrophobicity of Transport Barriers in the Nuclear Pore Complex as Compared with the Liquid/Liquid Interface by Scanning Electrochemical Microscopy. Anal Chem 2025; 97:2745-2753. [PMID: 39878353 PMCID: PMC11822746 DOI: 10.1021/acs.analchem.4c04861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM). The hypothesis deduced from studies of isolated FG-rich nucleoporins is supported quantitatively by investigating the authentic NPC for the first time. Specifically, we employ the n repeats of neurotoxic glycine-arginine dipeptide, GRn, as the molecular probes that engage in hydrophobic interactions with transport barriers in the NPC. We apply ion-transfer voltammetry at a micropipet-supported interface between aqueous and organic electrolyte solutions to confirm that larger GRn among n = 5-25 is more hydrophobic, as expected theoretically. The micropipet also serves as the tip of transient SECM to demonstrate that the NPC interacts more strongly with larger GRn, which supports the hydrophobicity of transport barriers. Kinetically, larger GRn stays in the NPC for longer to clog the nanopore, thereby expressing neurotoxicity. Significantly, this work implies that the efficient and safe nuclear import of genetic therapeutics requires an optimum balance between strong association with and fast dissociation from the NPC. Interestingly, this work represents the unexplored utility of liquid/liquid interfaces as models of hydrophobic protein condensates based on liquid-liquid phase separation as exemplified by nanoscale transport barriers in the NPC.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald C. Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
4
|
Chen R, Pathirathna P, Balla RJ, Kim J, Amemiya S. Nanoscale Quantitative Imaging of Single Nuclear Pore Complexes by Scanning Electrochemical Microscopy. Anal Chem 2024; 96:10765-10771. [PMID: 38904303 PMCID: PMC11223102 DOI: 10.1021/acs.analchem.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.
Collapse
Affiliation(s)
- Ran Chen
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Pavithra Pathirathna
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry and Chemical Engineering, Florida
Institute of Technology, Melbourne, Florida 32901, United States
| | - Ryan J. Balla
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyeon Kim
- Department
of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Huang SH, Amemiya S. Transient theory for scanning electrochemical microscopy of biological membrane transport: uncovering membrane-permeant interactions. Analyst 2024; 149:3115-3122. [PMID: 38647017 PMCID: PMC11131039 DOI: 10.1039/d4an00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Scanning electrochemical microscopy (SECM) has emerged as a powerful method to quantitatively investigate the transport of molecules and ions across various biological membranes as represented by living cells. Advantageously, SECM allows for the in situ and non-destructive imaging and measurement of high membrane permeability under simple steady-state conditions, thereby facilitating quantitative data analysis. The SECM method, however, has not provided any information about the interactions of a transported species, i.e., a permeant, with a membrane through its components, e.g., lipids, channels, and carriers. Herein, we propose theoretically that SECM enables the quantitative investigation of membrane-permeant interactions by employing transient conditions. Specifically, we model the membrane-permeant interactions based on a Langmuir-type isotherm to define the strength and kinetics of the interactions as well as the concentration of interaction sites. Finite element simulation predicts that each of the three parameters uniquely affects the chronoamperometric current response of an SECM tip to a permeant. Significantly, this prediction implies that all three parameters are determinable from an experimental chronoamperometric response of the SECM tip. Complimentarily, the steady-state current response of the SECM tip yields the overall membrane permeability based on the combination of the three parameters. Interestingly, our simulation also reveals the optimum strength of membrane-permeant interactions to maximize the transient flux of the permeant from the membrane to the tip.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
6
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
7
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
8
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|