1
|
Khan SN, Hymel JH, Pederson JP, McDaniel JG. Catalytic Role of Methanol in Anodic Coupling Reactions Involving Alcohol Trapping of Cation Radicals. J Org Chem 2024; 89:18353-18369. [PMID: 39626025 DOI: 10.1021/acs.joc.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In anodic electrosynthesis, cation radicals are often key intermediates that can be highly susceptible to nucleophilic attack and/or deprotonation, with the selectivity of competing pathways dictating product yield. In this work, we computationally investigate the role of methanol in alcohol trapping of enol ether cation radicals for which substantial modulation of the reaction yield by the solvent environment was previously observed. Reaction free energies computed for intramolecular coupling unequivocally demonstrate that the key intramolecular alcohol attack on the oxidized enol ether group is catalyzed by methanol, proceeding through overall second-order kinetics. Methanol complexation with the formed oxonium ion group gives rise to a "Zundel-like", shared proton conformation, providing a critical driving force for the intramolecular alcohol attack. Free energies computed for methanol solvent attack of enol ether cation radicals demonstrate an analogous mechanism and overall third-order kinetics, due to similar complexation from a secondary methanol molecule to form the "Zundel-like", shared proton conformation. As catalyzed by methanol, both intramolecular alcohol attack and methanol attack on the oxidized enol ether group are barrierless or low-barrier reactions, with kinetic competition dictated by the conformational free energy profile of the cation radical substrate and the difference in reaction rate orders.
Collapse
Affiliation(s)
- Shahriar N Khan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - John H Hymel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - John P Pederson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
2
|
Krueger R, Feng E, Barzova P, Lieberman N, Lin S, Moeller KD. Anodic Cyclizations, Densely Functionalized Synthetic Building Blocks, and the Importance of Recent Mechanistic Observations. J Org Chem 2024; 89:1927-1940. [PMID: 38231008 DOI: 10.1021/acs.joc.3c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Anodic cyclization reactions can provide a versatile method for converting newly obtained chiral lactols to densely functionalized cyclic building blocks. The method works by first converting the lactol into an electron-rich olefin and then oxidatively generating a radical cation that is trapped by a nucleophile. Historically, such reactions have benefited from the use of less polar radical cations when the trapping nucleophile is a heteroatom and more polar radical cations when the reaction forms C-C bonds. This forced one to optimize underperforming reactions by resynthesizing the substrate. Here, we show that by taking advantage of methods that serve to drive a reversible initial cyclization reaction toward the product, this dichotomy and need to manipulate the substrate can be avoided. Two such methods were utilized: a faster second oxidation step and a mediated electrolysis. Both led to successful cyclizations using a polar radical cation and heteroatom nucleophiles.
Collapse
Affiliation(s)
- Ruby Krueger
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Enqi Feng
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Polina Barzova
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Noah Lieberman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Song Lin
- Department of Chemistry and Biological Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Liu X, Yang D, Liu Z, Wang Y, Liu Y, Wang S, Wang P, Cong H, Chen YH, Lu L, Qi X, Yi H, Lei A. Unraveling the Structure and Reactivity Patterns of the Indole Radical Cation in Regioselective Electrochemical Oxidative Annulations. J Am Chem Soc 2023; 145:3175-3186. [PMID: 36705997 DOI: 10.1021/jacs.2c12902] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.
Collapse
Affiliation(s)
- Xing Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yunkun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yichang Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Krueger R, Moeller KD. Capitalizing on Mediated Electrolyses for the Construction of Complex, Addressable Molecular Surfaces. J Org Chem 2021; 86:15847-15865. [PMID: 34617752 PMCID: PMC8802379 DOI: 10.1021/acs.joc.1c01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic organic chemists are beginning to exploit electrochemical methods in increasingly creative ways. This is leading to a surge in productivity that is only now starting to take advantage of the full-potential of electrochemistry for accessing new structures in novel, more efficient ways. In this perspective, we provide insight into the potential of electrochemistry as a synthetic tool gained through studies of both direct anodic oxidation reactions and more recent indirect methods, and highlight how the development of new electrochemical methods can expand the nature of synthetic problems our community can tackle.
Collapse
Affiliation(s)
- Ruby Krueger
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kevin D. Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|