1
|
Cui B, Jiang S, Zhang Y, Su Y, Zhou H, Pang H. MOF-based nanomaterials for advanced aqueous-ion batteries. Adv Colloid Interface Sci 2025; 340:103469. [PMID: 40073539 DOI: 10.1016/j.cis.2025.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/26/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Metal-organic frameworks (MOFs)-based nanomaterials have great potential in the field of electrochemical energy storage due to their abundant pore size, high specific surface area, controllable structure and porosity, and homogeneous metal center. MOFs complexes and derivatives not only inherit the original morphology characteristics of MOFs but also provide excellent electrochemical performance. Batteries operating in aqueous electrolytes are cheaper, safer, and have higher ionic conductivity than those operating in conventional organic electrolytes. Therefore, it is useful to summarize the MOFs that should be used for aqueous electrochemical energy storage devices. This manuscript firstly introduces the composition and energy storage mechanism of aqueous Li/Na/Zn ion batteries. In addition, a detailed review of the development of MOFs-based nanomaterials and their commonly used characterization under aqueous conditions is presented. The relationship between the structure and composites of MOFs-based nanomaterials and electrochemical performance is highlighted. The applications of MOFs composites in aqueous batteries in terms of electrode materials and electrolytes are presented and summarized. Finally, research directions and perspectives for MOFs-based nanomaterials in advanced aqueous batteries are presented.
Collapse
Affiliation(s)
- Binglu Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanfei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huijie Zhou
- Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Zhou S, Chen C, Xia J, Li L, Qian X, Yin FX, He G, Chen Q, Chen H. FeN 4S 1 Single-Atom Sites Anchored on Three-Dimensional Porous Carbon for Highly Efficient and Durable Oxygen Electrocatalysis. ACS NANO 2024; 18:32995-33004. [PMID: 39528350 DOI: 10.1021/acsnano.4c15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Precisely designing asymmetric active centers and exploring their electronic regulation effects to prepare efficient bifunctional single-atom catalysts (SACs) is important for boosting the practical applications of zinc-air batteries (ZABs). Herein, an effective strategy has been developed by introducing an axial S atom to the FeN4 active center, simultaneously assisted by pyrolyzing the graphene oxide (GO) sheathed zeolitic-imidazolate framework-8 (ZIF8) composite and constructing a three-dimensional (3D) porous framework with abundant FeN4S1 moieties. This structure can accelerate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics owing to the modulated electronic redistribution and d-band center with a reduced energy barrier. The optimal S-Fe-NC/rGO showcases a lower voltage gap (ΔE) of 0.64 V between both the ORR and OER half-wave potentials at 10 mA cm-2, highlighting the excellent bifunctional activities. The assembled S-Fe-NC/rGO rechargeable liquid ZABs deliver a power density of 154.05 mW·cm-2 and a desirable durability of >900 h. More importantly, the corresponding flexible solid-state ZABs exhibit considerable foldability.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Feng-Xiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
4
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|