1
|
DeMaria WG, Figueroa-Milla AE, Kaija A, Harrington AE, Tero B, Ryzhova L, Liaw L, Rolle MW. Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. Tissue Eng Part A 2024. [PMID: 39109944 DOI: 10.1089/ten.tea.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ± 0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.
Collapse
Affiliation(s)
- William G DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail Kaija
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Benjamin Tero
- MaineHealth Institute for Research, Scarborough, Maine, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
| | - Larisa Ryzhova
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Lucy Liaw
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Islam MM, Beverung S, Steward R. Bio-Inspired Microdevices that Mimic the Human Vasculature. MICROMACHINES 2017; 8:mi8100299. [PMID: 30400489 PMCID: PMC6190335 DOI: 10.3390/mi8100299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022]
Abstract
Blood vessels may be found throughout the entire body and their importance to human life is undeniable. This is evident in the fact that a malfunctioning blood vessel can result in mild symptoms such as shortness of breath or chest pain to more severe symptoms such as a heart attack or stroke, to even death in the severest of cases. Furthermore, there are a host of pathologies that have been linked to the human vasculature. As a result many researchers have attempted to unlock the mysteries of the vasculature by performing studies that duplicate the physiological structural, chemical, and mechanical properties known to exist. While the ideal study would consist of utilizing living, blood vessels derived from human tissue, such studies are not always possible since intact human blood vessels are not readily accessible and there are immense technical difficulties associated with such studies. These limitations have opened the door for the development of microdevices modeled after the human vasculature as it is believed by many researchers in the field that such devices can one day replace tissue models. In this review we present an overview of microdevices developed to mimic various types of vasculature found throughout the human body. Although the human body contains a diverse array of vascular systems for this review we limit our discussion to the cardiovascular system and cerebrovascular system and discuss such systems that have been fabricated in both 2D and 3D configurations.
Collapse
Affiliation(s)
- Md Mydul Islam
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Robert Steward
- Departments of Mechanical and Aerospace Engineering, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
3
|
Loy C, Meghezi S, Lévesque L, Pezzoli D, Kumra H, Reinhardt D, Kizhakkedathu JN, Mantovani D. A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell–matrix interactions in mono-, bi- and tri-culture models. Biomater Sci 2017; 5:153-162. [DOI: 10.1039/c6bm00643d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy to prepare and manipulate model of the vascular wall in a planar shape to investigate physiological and pathological processes of vascular tissues.
Collapse
Affiliation(s)
- Caroline Loy
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Sébastien Meghezi
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Lucie Lévesque
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Heena Kumra
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Dieter Reinhardt
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- Department of Chemistry
- University of British Columbia
- Vancouver
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| |
Collapse
|
4
|
Kang D, Kim JH, Jeong YH, Kwak JY, Yoon S, Jin S. Endothelial monolayers on collagen-coated nanofibrous membranes: cell–cell and cell–ECM interactions. Biofabrication 2016; 8:025008. [DOI: 10.1088/1758-5090/8/2/025008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Simmers P, Gishto A, Vyavahare N, Kothapalli CR. Nitric oxide stimulates matrix synthesis and deposition by adult human aortic smooth muscle cells within three-dimensional cocultures. Tissue Eng Part A 2015; 21:1455-70. [PMID: 25597545 DOI: 10.1089/ten.tea.2014.0363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell-cell and cell-matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0-100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1-10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC cultures, respectively. Results attest to the benefits of delivering NO cues to suppress SMC proliferation and promote robust ECM synthesis and deposition by adult human SMCs, with significant applications in tissue engineering, biomaterial scaffold development, and drug delivery.
Collapse
Affiliation(s)
- Phillip Simmers
- 1 Department of Chemical and Biomedical Engineering, Cleveland State University , Cleveland, Ohio
| | | | | | | |
Collapse
|
6
|
Yin A, Li J, Bowlin GL, Li D, Rodriguez IA, Wang J, Wu T, EI-Hamshary HA, Al-Deyab SS, Mo X. Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids Surf B Biointerfaces 2014; 120:47-54. [DOI: 10.1016/j.colsurfb.2014.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023]
|
7
|
Bhattacharyya A, Lin S, Sandig M, Mequanint K. Regulation of vascular smooth muscle cell phenotype in three-dimensional coculture system by Jagged1-selective Notch3 signaling. Tissue Eng Part A 2014; 20:1175-87. [PMID: 24138322 PMCID: PMC3993058 DOI: 10.1089/ten.tea.2013.0268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
The modulation of vascular smooth muscle cell (VSMC) phenotype is an essential element to fabricate engineered conduits of clinical relevance. In vivo, owing to their close proximity, endothelial cells (ECs) play a role in VSMC phenotype switching. Although considerable progress has been made in vascular tissue engineering, significant knowledge gaps exist on how the contractile VSMC phenotype is induced at the conclusion of the tissue fabrication process. The objectives of this study were as follows: (1) to establish ligand presentation modes on transcriptional activation of VSMC-specific genes, (2) to develop a three-dimensional (3D) coculture model using human coronary artery smooth muscle cells (HCASMCs) and human coronary artery endothelial cells (HCAECs) on porous synthetic scaffolds and, (3) to investigate EC-mediated Notch signaling in 3D cultures and the induction of the HCASMC contractile phenotype. Whereas transcriptional activation of VSMC-specific genes was not induced by presenting soluble Jagged1 and Jagged1 bound to protein G beads, a direct link between HCAEC-bound Jagged1 and HCASMC differentiation genes was observed. Our 3D culture results showed that HCASMCs seeded to scaffolds and cultured for up to 16 days readily attached, infiltrated the scaffold, proliferated, and formed dense confluent layers. HCAECs, seeded on top of an HCASMC layer, formed a distinct, separate monolayer with cell-type partitioning, suggesting that HCAEC growth was contact inhibited. While we observed EC monolayer formation with 200,000 HCAECs/scaffold, seeding 400,000 HCAECs/scaffold revealed the formation of cord-like structures akin to angiogenesis. Western blot analyses showed that 3D coculture induced an upregulation of Notch3 receptor in HCASMCs and its ligand Jagged1 in HCAECs. This was accompanied by a corresponding induction of the contractile HCASMC phenotype as demonstrated by increased expression of smooth muscle-α-actin (SM-α-actin) and calponin. Knockdown of Jagged1 with siRNA showed a reduction in SM-α-actin and calponin in cocultures, identifying a link between Jagged1 and the expression of contractile proteins in 3D cocultures. We therefore conclude that the Notch3 signaling pathway is an important regulator of VSMC phenotype and could be targeted when fabricating engineered vascular tissues.
Collapse
Affiliation(s)
- Aparna Bhattacharyya
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Shigang Lin
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - Martin Sandig
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Yin A, Zhang K, McClure MJ, Huang C, Wu J, Fang J, Mo X, Bowlin GL, Al-Deyab SS, El-Newehy M. Electrospinning collagen/chitosan/poly(L-lactic acid-co-ϵ-caprolactone) to form a vascular graft: Mechanical and biological characterization. J Biomed Mater Res A 2012; 101:1292-301. [DOI: 10.1002/jbm.a.34434] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/11/2022]
|
9
|
Sankaran KK, Vasanthan KS, Krishnan UM, Sethuraman S. Development and evaluation of axially aligned nanofibres for blood vessel tissue engineering. J Tissue Eng Regen Med 2012; 8:640-51. [DOI: 10.1002/term.1566] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/03/2012] [Accepted: 06/06/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Krishna Kumar Sankaran
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology; SASTRA University; Thanjavur 613 401 Tamil Nadu India
| | - Kirthanashri Srinivasan Vasanthan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology; SASTRA University; Thanjavur 613 401 Tamil Nadu India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology; SASTRA University; Thanjavur 613 401 Tamil Nadu India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology; SASTRA University; Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
10
|
The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials 2012; 33:771-9. [DOI: 10.1016/j.biomaterials.2011.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/06/2011] [Indexed: 11/19/2022]
|
11
|
Zorlutuna P, Vadgama P, Hasirci V. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. J Tissue Eng Regen Med 2011; 4:628-37. [PMID: 20603868 DOI: 10.1002/term.278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two major requirements for a tissue-engineered vessel are the establishment of a continuous endothelium and adequate mechanical properties. In this study, a novel tubular collagen scaffold possessing nanopatterns in the form of channels (with a 650 nm periodicity) on both sides was designed and examined after seeding and co-culturing with vascular cells. Initially, the exterior of the tube was seeded with human vascular smooth muscle cells (VSMCs), cultured for 14 days, and then human internal thoracic artery endothelial cells (HITAECs) were seeded on the inside of the tube and cultured for a further week. Microscopy revealed that nano-scale patterns could be reproduced on collagen with high fidelity and preserved during incubation in vitro. The VSMCs were circumferentially orientated with the help of these nanopatterns and formed multilayers on the exterior, while HITAECs formed a continuous layer on the interior, as is the case in natural vessels. Both cell types were observed to proliferate and retain their phenotypes in the co-culture.
Collapse
Affiliation(s)
- P Zorlutuna
- METU, BIOMAT, Department of Biotechnology, Biotechnology Research Unit, Ankara, Turkey.
| | | | | |
Collapse
|
12
|
Song Y, Wennink JW, Kamphuis MM, Sterk LM, Vermes I, Poot AA, Feijen J, Grijpma DW. Dynamic Culturing of Smooth Muscle Cells in Tubular Poly(Trimethylene Carbonate) Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A 2011; 17:381-7. [DOI: 10.1089/ten.tea.2009.0805] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yan Song
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jos W.H. Wennink
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marloes M.J. Kamphuis
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Clinical Chemistry, Medical Spectrum Twente Hospital, Enschede, The Netherlands
| | | | - Istvan Vermes
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Clinical Chemistry, Medical Spectrum Twente Hospital, Enschede, The Netherlands
| | - Andre A. Poot
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jan Feijen
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Dirk W. Grijpma
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater 2010; 6:2422-33. [PMID: 20060934 DOI: 10.1016/j.actbio.2009.12.029] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 12/08/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022]
Abstract
Throughout native artery, collagen, and elastin play an important role, providing a mechanical backbone, preventing vessel rupture, and promoting recovery under pulsatile deformations. The goal of this study was to mimic the structure of native artery by fabricating a multi-layered electrospun conduit composed of poly(caprolactone) (PCL) with the addition of elastin and collagen with blends of 45-45-10, 55-35-10, and 65-25-10 PCL-ELAS-COL to demonstrate mechanical properties indicative of native arterial tissue, while remaining conducive to tissue regeneration. Whole grafts and individual layers were analyzed using uniaxial tensile testing, dynamic compliance, suture retention, and burst strength. Compliance results revealed that changes to the middle/medial layer changed overall graft behavior with whole graft compliance values ranging from 0.8 to 2.8%/100 mm Hg, while uniaxial results demonstrated an average modulus range of 2.0-11.8 MPa. Both modulus and compliance data displayed values within the range of native artery. Mathematical modeling was implemented to show how changes in layer stiffness affect the overall circumferential wall stress, and as a design aid to achieve the best mechanical combination of materials. Overall, the results indicated that a graft can be designed to mimic a tri-layered structure by altering layer properties.
Collapse
|
14
|
McClure MJ, Sell SA, Ayres CE, Simpson DG, Bowlin GL. Electrospinning-aligned and random polydioxanone–polycaprolactone–silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater 2009; 4:055010. [DOI: 10.1088/1748-6041/4/5/055010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|