1
|
Entezari A, Wu Q, Mirkhalaf M, Lu Z, Roohani I, Li Q, Dunstan CR, Jiang X, Zreiqat H. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis. Acta Biomater 2024; 180:115-127. [PMID: 38642786 DOI: 10.1016/j.actbio.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
Bone has the capacity to regenerate itself for relatively small defects; however, this regenerative capacity is diminished in critical-size bone defects. The development of synthetic materials has risen as a distinct strategy to address this challenge. Effective synthetic materials to have emerged in recent years are bioceramic implants, which are biocompatible and highly bioactive. Yet nothing suitable for the repair of large bone defects has made the transition from laboratory to clinic. The clinical success of bioceramics has been shown to depend not only on the scaffold's intrinsic material properties but also on its internal porous geometry. This study aimed to systematically explore the implications of varying channel size, shape, and curvature in tissue scaffolds on in vivo bone regeneration outcomes. 3D printed bioceramic scaffolds with varying channel sizes (0.3 mm to 1.5 mm), shapes (circular vs rectangular), and curvatures (concave vs convex) were implanted in rabbit femoral defects for 8 weeks, followed by histological evaluation. We demonstrated that circular channel sizes of around 0.9 mm diameter significantly enhanced bone formation, compared to channel with diameters of 0.3 mm and 1.5 mm. Interestingly, varying channel shapes (rectangular vs circular) had no significant effect on the volume of newly formed bone. Furthermore, the present study systematically demonstrated the beneficial effect of concave surfaces on bone tissue growth in vivo, reinforcing previous in silico and in vitro findings. This study demonstrates that optimizing architectural configurations within ceramic scaffolds is crucial in enhancing bone regeneration outcomes. STATEMENT OF SIGNIFICANCE: Despite the explosion of work on developing synthetic scaffolds to repair bone defects, the amount of new bone formed by scaffolds in vivo remains suboptimal. Recent studies have illuminated the pivotal role of scaffolds' internal architecture in osteogenesis. However, these investigations have mostly remained confined to in silico and in vitro experiments. Among the in vivo studies conducted, there has been a lack of systematic analysis of individual architectural features. Herein, we utilized bioceramic 3D printing to conduct a systematic exploration of the effects of channel size, shape, and curvature on bone formation in vivo. Our results demonstrate the significant influence of channel size and curvature on in vivo outcomes. These findings provide invaluable insights into the design of more effective bone scaffolds.
Collapse
Affiliation(s)
- Ali Entezari
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Qianju Wu
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China; Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian, China
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Zufu Lu
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Iman Roohani
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Colin R Dunstan
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Hala Zreiqat
- Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Lv N, Zhou Z, Hou M, Hong L, Li H, Qian Z, Gao X, Liu M. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol 2024; 11:1291969. [PMID: 38312513 PMCID: PMC10834685 DOI: 10.3389/fbioe.2023.1291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
3
|
Alshammari A, Alabdah F, Wang W, Cooper G. Virtual Design of 3D-Printed Bone Tissue Engineered Scaffold Shape Using Mechanobiological Modeling: Relationship of Scaffold Pore Architecture to Bone Tissue Formation. Polymers (Basel) 2023; 15:3918. [PMID: 37835968 PMCID: PMC10575293 DOI: 10.3390/polym15193918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Large bone defects are clinically challenging, with up to 15% of these requiring surgical intervention due to non-union. Bone grafts (autographs or allografts) can be used but they have many limitations, meaning that polymer-based bone tissue engineered scaffolds (tissue engineering) are a more promising solution. Clinical translation of scaffolds is still limited but this could be improved by exploring the whole design space using virtual tools such as mechanobiological modeling. In tissue engineering, a significant research effort has been expended on materials and manufacturing but relatively little has been focused on shape. Most scaffolds use regular pore architecture throughout, leaving custom or irregular pore architecture designs unexplored. The aim of this paper is to introduce a virtual design environment for scaffold development and to illustrate its potential by exploring the relationship of pore architecture to bone tissue formation. A virtual design framework has been created utilizing a mechanical stress finite element (FE) model coupled with a cell behavior agent-based model to investigate the mechanobiological relationships of scaffold shape and bone tissue formation. A case study showed that modifying pore architecture from regular to irregular enabled between 17 and 33% more bone formation within the 4-16-week time periods analyzed. This work shows that shape, specifically pore architecture, is as important as other design parameters such as material and manufacturing for improving the function of bone tissue scaffold implants. It is recommended that future research be conducted to both optimize irregular pore architectures and to explore the potential extension of the concept of shape modification beyond mechanical stress to look at other factors present in the body.
Collapse
Affiliation(s)
- Adel Alshammari
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Fahad Alabdah
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Weiguang Wang
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| | - Glen Cooper
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| |
Collapse
|
4
|
Sakisaka Y, Ishihata H, Maruyama K, Nemoto E, Chiba S, Nagamine M, Hasegawa H, Hatsuzawa T, Yamada S. Serial Cultivation of an MSC-Like Cell Line with Enzyme-Free Passaging Using a Microporous Titanium Scaffold. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1165. [PMID: 36770173 PMCID: PMC9919603 DOI: 10.3390/ma16031165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In vitro studies on adherent cells require a process of passage to dissociate the cells from the culture substrate using enzymes or other chemical agents to maintain cellular activity. However, these proteolytic enzymes have a negative influence on the viability and phenotype of cells. The mesenchymal stem cell (MSC)-like cell line, C3H10T1/2, adhered, migrated, and proliferated to the same extent on newly designed microporous titanium (Ti) membrane and conventional culture dish, and spontaneous transfer to another substrate without enzymatic or chemical dissociation was achieved. The present study pierced a 10 μm-thick pure Ti sheet with 25 μm square holes at 75 μm intervals to create a dense porous structure with biomimetic topography. The pathway of machined holes allowed the cells to access both sides of the membrane frequently. In a culture with Ti membranes stacked above- and below-seeded cells, cell migration between the neighboring membranes was confirmed using the through-holes of the membrane and contact between the membranes as migration routes. Furthermore, the cells on each membrane migrated onto the conventional culture vessel. Therefore, a cell culture system with enzyme-free passaging was developed.
Collapse
Affiliation(s)
- Yukihiko Sakisaka
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryou-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Ishihata
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryou-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kentaro Maruyama
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryou-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryou-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shigeki Chiba
- Nagamine Manufacturing Co., Ltd., 1725-26, Kishinoue, Manno-cho, Nakatado-gun, Kagawa 766-0026, Japan
| | - Masaru Nagamine
- Nagamine Manufacturing Co., Ltd., 1725-26, Kishinoue, Manno-cho, Nakatado-gun, Kagawa 766-0026, Japan
| | - Hiroshi Hasegawa
- Department of Oral Surgery and Dentistry, Fukushima Medical University, 1, Hikariga-oka, Fukushima 960-1295, Japan
| | - Takeshi Hatsuzawa
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryou-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Eichholz K, Freeman F, Pitacco P, Nulty J, Ahern D, Burdis R, Browe D, Garcia O, Hoey D, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication 2022; 14. [PMID: 35947963 DOI: 10.1088/1758-5090/ac88a1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
Collapse
Affiliation(s)
- Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons Building, Dublin, IRELAND
| | - Fiona Freeman
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Pierluca Pitacco
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Jessica Nulty
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Daniel Ahern
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - David Browe
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services Inc, Irvine, California, 0000, UNITED STATES
| | - David Hoey
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons building, Dublin, 2, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| |
Collapse
|
6
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
7
|
Rapone B, Inchingolo AD, Trasarti S, Ferrara E, Qorri E, Mancini A, Montemurro N, Scarano A, Inchingolo AM, Dipalma G, Inchingolo F. Long-Term Outcomes of Implants Placed in Maxillary Sinus Floor Augmentation with Porous Fluorohydroxyapatite (Algipore ® FRIOS ®) in Comparison with Anorganic Bovine Bone (Bio-Oss ®) and Platelet Rich Plasma (PRP): A Retrospective Study. J Clin Med 2022; 11:jcm11092491. [PMID: 35566615 PMCID: PMC9105692 DOI: 10.3390/jcm11092491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Purpose: The objective of this retrospective study was to evaluate the long-term clinical outcomes of bone regeneration procedures using algae-derived plant hydroxyapatite (Algipore® FRIOS®) compared with demineralized anorganic bovine bone (Bio-Oss®), in combination with autologous blood-derived PRP. Materials and Methods: Partially edentulous patients with severe atrophy of posterior maxillary treated by means of the split bone technique in a two-stage grafting procedures were observed for up to seven years after implants placement. After surgeries, the natural porous fluorohydroxyapatite (FHA) (Algipore® FRIOS®; Group, n = 29) or anorganic bovine bone (Bio-Oss® Group, n = 28) with autogenous bone in a 50:50 composite ratio with PRP, were administered in a 2.8-mm critical-size defect (CSD). Four months later, implants were placed at second-stage surgery. Results: A sample of fifty-seven consecutive patients who required sinus augmentation was included in the study, and 57 implants were placed. There was no drop out or loss of follow-up of any case. Clinical and radiographic examinations revealed a comparable pattern of newly formed bone in both groups after seven years of functional loading for implants placed after sinus augmentation using porous fluorohydroxyapatite and anorganic bovine bone. No significant difference in marginal bone loss was found around implants in both groups. Conclusions: The favorable implant outcomes suggest both biomaterials are suitable for sinus grafting in severely atrophic maxillae.
Collapse
Affiliation(s)
- Biagio Rapone
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
- Correspondence: (B.R.); (S.T.); Tel.: +39-3477619817 (B.R.)
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
| | - Stefano Trasarti
- Department of European Studies Jean Monnet of Lugano, 6900 Lugano, Switzerland
- Correspondence: (B.R.); (S.T.); Tel.: +39-3477619817 (B.R.)
| | - Elisabetta Ferrara
- Complex Operative Unit of Odontostomatology, Hospital S.S. Annunziata, 66100 Chieti, Italy;
| | - Erda Qorri
- Dean Faculty of Medical Sciences, Albanian University, Bulevardi Zogu I, Tirana 1001, Albania;
| | - Antonio Mancini
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy;
| | - Antonio Scarano
- Department of Oral Science, Nano and Biotechnology, CaSt-Met University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (A.M.); (A.M.I.); (G.D.); (F.I.)
| |
Collapse
|
8
|
Freitas P, Kishida R, Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. J Biomed Mater Res A 2022; 110:1278-1290. [PMID: 35194936 DOI: 10.1002/jbm.a.37374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023]
Abstract
The porous architecture of artificial bones plays a pivotal role in bone ingrowth. Although salt leaching methods produce predictable porous architectures, their application in the low-temperature fabrication of ceramics remains a challenge. Carbonate apatite (CO3 Ap) blocks with three ranges of pore sizes: 100-200, 200-400, and 400-600 μm, were fabricated from CaCO3 blocks with embedded Na2 HPO4 crystals as a porogen and accelerator for CaCO3 -to-CO3 Ap conversion. CaCO3 blocks were obtained from Ca(OH)2 compacts with Na2 HPO4 by CO2 flow at 100% humidity. When carbonated under 100% water humidity, the dissolution of Na2 HPO4 and the formation of hydroxyapatite were observed. Using 90% methanol and 10% water were beneficial in avoiding the Na2 HPO4 consumption and generating the metastable CaCO3 vaterite, which was rapidly converted into CO3 Ap in a Na2 HPO4 solution in 7 days. For the histological evaluation, the CO3 Ap blocks were implanted in rabbit femur defects. Four weeks after implantation, new bone was formed at the edges of the blocks. After 12 weeks, new bone was observed in the central areas of the material. Notably, CO3 Ap blocks with pore sizes of 100-200 μm were the most effective, exhibiting approximately 23% new bone area. This study sheds new light on the fabrication of tailored porous blocks and provides a useful guide for designing artificial bones.
Collapse
Affiliation(s)
- Pery Freitas
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Zhang Y, Wang P, Jin J, Li L, He SY, Zhou P, Jiang Q, Wen C. In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnol Bioeng 2021; 119:591-604. [PMID: 34723387 DOI: 10.1002/bit.27976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
Recent evidence shows that the curvature of porous scaffold plays a significant role in guiding tissue regeneration. However, the underlying mechanism remains controversial to date. In this study, we developed an in silico model to simulate the effect of surface curvature on the osteoconduction of scaffold implants, which comprises the primary aspects of bone regeneration. Selective laser melting was used to manufacture a titanium scaffold with channels representative of different strut curvatures for in vivo assessment. The titanium scaffold was implanted in the femur condyles of rabbits to validate the mathematical model. Simulation results suggest that the curvature affected the distribution of growth factors and subsequently induced the migration of osteoblast lineage cells and bone deposition to the locations with higher curvature. The predictions of the mathematical model are in good agreement with the in vivo assessment results, in which newly formed bone first appeared adjacent to the vertices of the major axes in elliptical channels. The mechanism of curvature-guided osteoconduction may provide a guide for the design optimization of scaffold implants to achieve enhanced bone ingrowth.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiyong Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Si-Yuan He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cuie Wen
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021; 26:333-366. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models-a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies-microextrusion, droplet-based/inkjet, and light-based/crosslinking-are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Collapse
Affiliation(s)
- Anh Tong
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Quang Long Pham
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Paul Abatemarco
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Austin Mathew
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Dhruv Gupta
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Siddharth Iyer
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Roman Voronov
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| |
Collapse
|
11
|
Bari E, Scocozza F, Perteghella S, Sorlini M, Auricchio F, Torre ML, Conti M. 3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine. Pharmaceutics 2021; 13:515. [PMID: 33918073 PMCID: PMC8070453 DOI: 10.3390/pharmaceutics13040515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022] Open
Abstract
Three-dimensional printing of poly(ε-caprolactone) (PCL) is a consolidated scaffold manufacturing technique for bone regenerative medicine. Simultaneously, the mesenchymal stem/stromal cell (MSC) secretome is osteoinductive, promoting scaffold colonization by cells, proliferation, and differentiation. The present paper combines 3D-printed PCL scaffolds with lyosecretome, a freeze-dried formulation of MSC secretome, containing proteins and extracellular vesicles (EVs). We designed a lyosecretome 3D-printed scaffold by two loading strategies: (i) MSC secretome adsorption on 3D-printed scaffold and (ii) coprinting of PCL with an alginate-based hydrogel containing MSC secretome (at two alginate concentrations, i.e., 6% or 10% w/v). A fast release of proteins and EVs (a burst of 75% after 30 min) was observed from scaffolds obtained by absorption loading, while coprinting of PCL and hydrogel, encapsulating lyosecretome, allowed a homogeneous loading of protein and EVs and a controlled slow release. For both loading modes, protein and EV release was governed by diffusion as revealed by the kinetic release study. The secretome's diffusion is influenced by alginate, its concentration, or its cross-linking modes with protamine due to the higher steric hindrance of the polymer chains. Moreover, it is possible to further slow down protein and EV release by changing the scaffold shape from parallelepiped to cylindrical. In conclusion, it is possible to control the release kinetics of proteins and EVs by changing the composition of the alginate hydrogel, the scaffold's shape, and hydrogel cross-linking. Such scaffold prototypes for bone regenerative medicine are now available for further testing of safety and efficacy.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.B.); (S.P.)
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy;
| | - Marzio Sorlini
- PharmaExceed S.r.l., 27100 Pavia, Italy;
- SUPSI—Department of Innovative Technologies, Lugano University Centre, 6962 Viganello, Switzerland
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy;
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., 27100 Pavia, Italy
| |
Collapse
|
12
|
Zhu H, Shi Z, Cai X, Yang X, Zhou C. The combination of PLLA/PLGA/PCL composite scaffolds integrated with BMP-2-loaded microspheres and low-intensity pulsed ultrasound alleviates steroid-induced osteonecrosis of the femoral head. Exp Ther Med 2020; 20:126. [PMID: 33005252 PMCID: PMC7523288 DOI: 10.3892/etm.2020.9254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS), which has been previously reported to promote bone repair, is proposed to be a noninvasive form of therapy for the treatment of osteonecrosis. Bone fillers made from composite scaffolds have been demonstrated to be effective for preventing bone defects such as osteonecrosis. The present study aimed to investigate whether the application of LIPUS combined with bone morphogenetic protein-2 (BMP-2)-loaded poly-L-lactic acid/polylactic-co-glycolic acid/poly-ε-caprolactone (PLLA/PLGA/PCL) composite scaffolds can improve recovery in a rat model of steroid-induced osteonecrosis of the femoral head (ONFH). BMP-2-loaded PLGA microspheres incorporated into PLLA/PLGA/PCL composite scaffolds were constructed. Bilateral femoral head LIPUS intervention was conducted in rats with steroid-induced ONFH. LIPUS intervention alone contributed to the alleviation of osteonecrosis, in addition to improving load-carrying capacity and accelerated bone formation, angiogenesis and differentiation. Subsequently, femoral head parameters and assessment of load-carrying capacity, bone formation-related factors, and angiogenesis- and differentiation-related factors were measured in rats with or without implanted BMP-2-loaded PLLA/PLGA/PCL composite scaffolds. LIPUS combined with the implantation of PLLA/PLGA/PCL composite scaffolds loaded with BMP-2 microspheres protected rats against steroid-induced ONFH and improved load-carrying capacity, bone formation, angiogenesis and differentiation. Together, these data support the use of BMP-2-loaded PLLA/PLGA/PCL composite scaffolds combined with LIPUS for ONFH as a potential alternative curative solution for treating bone diseases.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhongli Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xunzi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaobo Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chenhe Zhou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
13
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Li Q, Feng Z, Song H, Zhang J, Dong A, Kong D, Wang W, Huang P. 19F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds in vivo. Biomater Sci 2020; 8:3301-3309. [PMID: 32356855 DOI: 10.1039/d0bm00278j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The degradation behavior of hydrogel scaffolds is closely related to the controlled release of bioactive agents and matching with the proliferative demands of newly generated tissues. However, the current methods cannot provide precise localization and track the degradation of individual hydrogel scaffolds in vivo, despite superficial or volumetric information. Here, for the first time, we presented the use of 19F magnetic resonance imaging (19F MRI) to precisely monitor the localization and quantify the degradation rate of implantable or injectable hydrogels in a real-time and noninvasive manner, with no interference of endogenous background signals and limitation of penetration depth. The total voxel and content in the region of interest (ROI) were linearly correlated to the injection amount, providing exact three-dimensional (3D) stereoscopic and two-dimensional (2D) anatomical information in the meantime. Moreover, a computational algorithm was established to present the real-time degradation rate in vivo as a function of time, which was implemented directly from the 19F MRI dataset. In addition, labelling with a zwitterionic 19F contrast agent demonstrated a facile and general applicability for multiple types of materials with no influence on their original gelation properties as well as 19F NMR properties in the hydrogel matrix. Therefore, this 19F MRI method offers a new approach to non-invasively track the degradation rate of hydrogel scaffolds in vivo in a precise localization and accurate quantification way, which will suffice the need for the evaluation of implants at deep depths in large animals or human objects.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110848. [PMID: 32279778 DOI: 10.1016/j.msec.2020.110848] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
The pore architecture of scaffolds is a critical factor for angiogenesis and bone regeneration. Although the effects of scaffold macropore size have been investigated, most scaffolds feature macropores with poor uniformity and interconnectivity, and other parameters (e.g., microporosity, chemical composition, and strut thickness) differ among scaffolds. To clarify the threshold of effective macropore size, we fabricated honeycomb scaffolds (HCSs) with distinct macropore (i.e., channel) sizes (~100, ~200, and ~300 μm). The HCSs were composed of AB-type carbonate apatite with ~8.5% carbonate ions, i.e., the same composition as human bone mineral. Their honeycomb architecture displayed uniformly sized and orderly arranged channels with extremely high interconnectivity, and all the HCSs displayed ~100-μm-thick struts and 0.06 cm3 g-1 of micropore volume. The compressive strengths of HCSs with ~100-, ~200-, and ~300-μm channels were higher than those of reported scaffolds, and decreased with increasing channel size: 62 ± 6, 55 ± 9, and 43 ± 8 MPa, respectively. At four weeks after implantation in rabbit femur bone defects, new bone and blood vessels were formed in all the channels of these HCSs. Notably, the ~300-μm channels were extensively occupied by new bone. We demonstrated that high interconnectivity and uniformity of channels can decrease the threshold of effective macropore size, enabling the scaffolds to maintain high mechanical properties and osteogenic ability and serve as implants for weight-bearing areas.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Melvin L Munar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
El Aita I, Ponsar H, Quodbach J. A Critical Review on 3D-printed Dosage Forms. Curr Pharm Des 2019; 24:4957-4978. [PMID: 30520369 DOI: 10.2174/1381612825666181206124206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decades, 3D-printing has been investigated and used intensively in the field of tissue engineering, automotive and aerospace. With the first FDA approved printed medicinal product in 2015, the research on 3D-printing for pharmaceutical application has attracted the attention of pharmaceutical scientists. Due to its potential of fabricating complex structures and geometrics, it is a highly promising technology for manufacturing individualized dosage forms. In addition, it enables the fabrication of dosage forms with tailored drug release profiles. OBJECTIVE The aim of this review article is to give a comprehensive overview of the used 3D-printing techniques for pharmaceutical applications, including information about the required material, advantages and disadvantages of the respective technique. METHODS For the literature research, relevant keywords were identified and the literature was then thoroughly researched. CONCLUSION The current status of 3D-printing as a manufacturing process for pharmaceutical dosage forms was highlighted in this review article. Moreover, this article presents a critical evaluation of 3D-printing to control the dose and drug release of printed dosage forms.
Collapse
Affiliation(s)
- Ilias El Aita
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.,INVITE GmbH, Drug Delivery Innovation Center (DDIC), Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
17
|
Theerasilp M, Crespy D. pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS APPLIED BIO MATERIALS 2019; 2:4283-4290. [PMID: 35021443 DOI: 10.1021/acsabm.9b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective combination therapies can be achieved by programming materials for controlling release sequence, timing, and dose of multiple payloads. Herein, we synthesize dextran esters by coesterification of dextran, which display responsive properties at a precise pH threshold between 5.0 and 7.0. Multilayers electrospun nanofibers are prepared so that three different payloads are entrapped in three different dextran esters. The release of the three drugs can be sequentially and independently activated by a gradual increase of pH value. Because both pH threshold and release kinetics are matching conditions encountered by aliments along the gastrointestinal tract, these dextran ester multilayer nanofibers are promising for oral drug delivery.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
18
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:863-893. [PMID: 29053081 DOI: 10.1080/09205063.2017.1394711] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(ε-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades.
Collapse
Affiliation(s)
- Elbay Malikmammadov
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey
| | - Tugba Endogan Tanir
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Aysel Kiziltay
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Vasif Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,d Department of Biological Sciences , Middle East Technical University , Ankara , Turkey
| | - Nesrin Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,e Department of Chemistry , Middle East Technical University , Ankara , Turkey
| |
Collapse
|
19
|
He CW, Parowatkin M, Mailänder V, Flechtner-Mors M, Ziener U, Landfester K, Crespy D. Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3885-3894. [PMID: 28051296 DOI: 10.1021/acsami.6b13176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptide drugs delivered orally need to be protected from degradation for achieving their functions. To fulfill the complicated task of oral drug delivery, we present a hierarchically structured drug-delivery system that can undertake structural changes, so multiple functions can be triggered by a sequence of stimuli. Such hierarchical system is achieved in a nanoparticle-in-nanofiber configuration, in which both the nanofibers and the nanoparticles are pH-responsive and biocompatible. A model peptide is efficiently encapsulated under mild condition, and the nanocarriers are further electrospun with a pH-responsive mucoadhesive polymer. The nanoparticles are released from the nanofibers, and thereafter the peptides are released from the nanoparticles in a pH-responsive manner. The nanoparticles are compatible with caco-2 cells, and the endocytosis of the nanoparticles is described in detail.
Collapse
Affiliation(s)
- Carl Wei He
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Maria Parowatkin
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology , 21210 Rayong, Thailand
| |
Collapse
|
20
|
Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B 2017; 5:6175-6192. [DOI: 10.1039/c7tb00741h] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper presents an overview of the effect of porous biomaterial architecture on seeding efficiency, cell response, angiogenesis, and bone formation.
Collapse
Affiliation(s)
- F. S. L. Bobbert
- Department of Biomechanical Engineering
- Delft University of Technology
- Delft 2628CD
- The Netherlands
| | - A. A. Zadpoor
- Department of Biomechanical Engineering
- Delft University of Technology
- Delft 2628CD
- The Netherlands
| |
Collapse
|
21
|
Spiller KL, Vunjak-Novakovic G. Clinical translation of controlled protein delivery systems for tissue engineering. Drug Deliv Transl Res 2016; 5:101-15. [PMID: 25787736 DOI: 10.1007/s13346-013-0135-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Collapse
Affiliation(s)
- Kara L Spiller
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street Vanderbilt Clinic 12-234, New York, NY, 10032, USA
| | | |
Collapse
|
22
|
Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants. Proc Natl Acad Sci U S A 2015; 112:5147-52. [PMID: 25825771 DOI: 10.1073/pnas.1502232112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Therapies that promote angiogenesis have been successfully applied using various combinations of proangiogenic factors together with a biodegradable delivery vehicle. In this study we used bimodal noninvasive monitoring to show that the host response to a proangiogenic biomaterial can be drastically affected by the mode of implantation and the surface area-to-volume ratio of the implant material. Fluorescence/MRI probes were covalently conjugated to VEGF-bearing biodegradable PEG-fibrinogen hydrogel implants and used to document the in vivo degradation and liberation of bioactive constituents in an s.c. rat implantation model. The hydrogel biodegradation and angiogenic host response with three types of VEGF-bearing implant configurations were compared: preformed cylindrical plugs, preformed injectable microbeads, and hydrogel precursor, injected and polymerized in situ. Although all three were made with identical amounts of precursor constituents, the MRI data revealed that in situ polymerized hydrogels were fully degraded within 2 wk; microbead degradation was more moderate, and plugs degraded significantly more slowly than the other configurations. The presence of hydrogel degradation products containing the fluorescent label in the surrounding tissues revealed a distinct biphasic release profile for each type of implant configuration. The purported in vivo VEGF release profile from the microbeads resulted in highly vascularized s.c. tissue containing up to 16-fold more capillaries in comparison with controls. These findings demonstrate that the configuration of an implant can play an important role not only in the degradation and resorption properties of the materials, but also in consequent host angiogenic response.
Collapse
|
23
|
Barthes J, Vrana NE, Özçelik H, Gahoual R, François YN, Bacharouche J, Francius G, Hemmerlé J, Metz-Boutigue MH, Schaaf P, Lavalle P. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. Biomater Sci 2015; 3:1302-11. [DOI: 10.1039/c5bm00172b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular ECM-mimicking coating for cell culture is designed and acts as gel-feeder providing simultaneously ECM components, growth factors, stiffening elements and antimicrobials.
Collapse
|
24
|
Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater 2014; 102:1562-79. [PMID: 24678016 DOI: 10.1002/jbm.b.33144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 01/04/2023]
Abstract
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), University of Pisa, 56010, San Piero a Grado (Pi), Italy
| | | | | | | | | | | |
Collapse
|
25
|
Poly(ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.40110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:516-28. [PMID: 23651329 DOI: 10.1089/ten.teb.2012.0672] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and have been widely used in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes, and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production, and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functionalities. Biomaterials have been modified in their properties and surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | | | | | | |
Collapse
|
27
|
Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods 2012; 19:417-26. [PMID: 23102234 DOI: 10.1089/ten.tec.2012.0383] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fabricating three-dimensional (3D) porous scaffolds with controlled structure and geometry is crucial for tissue regeneration. To date, exploration in printing 3D natural protein scaffolds is limited. In this study, soy protein slurry was successfully printed using the 3D Bioplotter to form scaffolds. A method to verify the structural integrity of resulting scaffolds during printing was developed. This process involved measuring the mass extrusion flow rate of the slurry from the instrument, which was directly affected by the extrusion pressure and the soy protein slurry properties. The optimal mass flow rate for printing soy slurry at 27°C was 0.0072±0.0002 g/s. The addition of dithiothreitol to soy slurries demonstrated the importance of disulfide bonds in forming solid structures upon printing. Resulting Bioplotted soy protein scaffolds were cured using 95% ethanol and post-treated using dehydrothermal treatment (DHT), a combination of freeze-drying and DHT, and chemical crosslinking using 1-ethyl-3-(3 dimethylaminopropyl)carbodiimide (EDC) chemistry. Surface morphologies of the different treatment groups were characterized using scanning electron microscopy. Scaffold properties, including relative crosslink density, mass loss upon rinsing, and compressive modulus revealed that EDC crosslinked scaffolds were the most robust with moduli of approximately 4 kPa. Scaffold geometry (45° and 90° layer rotations) affected the mechanical properties for DHT and EDC crosslinked scaffolds. Seeding efficiency of human mesenchymal stem cells (hMSC) was highest for nontreated and thermally treated scaffolds, and all scaffolds supported hMSC viability over time.
Collapse
Affiliation(s)
- Karen B Chien
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|