1
|
Vela OC, Boariu M, Rusu D, Iorio-Siciliano V, Ramaglia L, Boia S, Radulescu V, Ilyes I, Stratul SI. Healing of Periodontal Suprabony Defects following Treatment with Open Flap Debridement with or without Hyaluronic Acid (HA) Application. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:829. [PMID: 38793012 PMCID: PMC11122748 DOI: 10.3390/medicina60050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: This randomized, double-arm, multicentric clinical trial aims to compare the clinical outcomes following the treatment of suprabony periodontal defects using open flap debridement (OFD) with or without the application of hyaluronic acid (HA). Materials and Methods: Sixty systemically healthy patients with at least two teeth presenting suprabony periodontal defects were randomly assigned with a 1:1 allocation ratio using computer-generated tables into a test (OFD + HA) or control group (OFD). The main outcome variable was clinical attachment level (CAL). The secondary outcome variables were changes in mean probing pocket depth (PPD), gingival recession (GR), full-mouth plaque score (FMPS), and full-mouth bleeding score (FMBS). All clinical measurements were carried out at baseline and 12 months. Results: Sixty patients, thirty in each group, were available for statistical analysis. The mean CAL gain was statistically significantly different (p < 0.001) in the test group compared with the control group (3.06 ± 1.13 mm vs. 1.44 ± 1.07 mm). PPD reduction of test group measurements (3.28 ± 1.14 mm) versus the control group measurements (2.61 ± 1.22 mm) were statistically significant (p = 0.032). GR changes were statistically significant only in the test group 0.74 ± 1.03 mm (p < 0.001). FMBS and FMPS revealed a statistically significant improvement mostly in the test group. Conclusions: Suprabony periodontal defects could benefit from the additional application of HA in conjunction with OFD in terms of improvement of the clinical parameters compared with OFD alone.
Collapse
Affiliation(s)
- Octavia Carolina Vela
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| | - Marius Boariu
- Department of Endodontics, Faculty of Dental Medicine, TADERP Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Darian Rusu
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| | - Vincenzo Iorio-Siciliano
- Department of Periodontology, School of Dental Medicine, University of Naples Federico II, 80138 Naples, Italy; (V.I.-S.); (L.R.)
| | - Luca Ramaglia
- Department of Periodontology, School of Dental Medicine, University of Naples Federico II, 80138 Naples, Italy; (V.I.-S.); (L.R.)
| | - Simina Boia
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| | - Viorelia Radulescu
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| | - Ioana Ilyes
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| | - Stefan-Ioan Stratul
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (O.C.V.); (D.R.); (S.B.); (V.R.); (I.I.); (S.-I.S.)
| |
Collapse
|
2
|
Ramenzoni LL, Annasohn L, Miron RJ, Attin T, Schmidlin PR. Combination of enamel matrix derivative and hyaluronic acid inhibits lipopolysaccharide-induced inflammatory response on human epithelial and bone cells. Clin Oral Investig 2021; 26:1773-1783. [PMID: 34460002 PMCID: PMC8816768 DOI: 10.1007/s00784-021-04152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022]
Abstract
Objectives The aim of this study was to evaluate the in vitro effect of enamel matrix derivative (EMD) and hyaluronic acid (HA) and their synergistic combination on lipopolysaccharides (LPS)-induced inflammation in human keratinocytes and osteoblasts. Material and methods Cells were challenged with LPS (1 μg/ml) and cultured in the following treatment groups with EMD (30 mg/ml) and HA (30 mg/ml): LPS, EMD, HA, EMD + HA, EMD + LPS, HA + LPS, and EMD + HA + LPS. Cell viability, inflammatory cytokine expression, and cell migration were determined using colorimetric assay, quantitative real-time polymerase chain reaction (qPCR), and scratch wound healing assay, respectively. Results Cell viability was decreased when exposed to LPS compared to the controls. Overall, LPS treatment expressed upregulation on inflammatory cytokine tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). EMD and HA reduced up to 3.0-fold the cytokine expression caused by LPS (p < 0.05). EMD and HA statistically induced higher migration in osteoblasts and keratinocytes, respectively. Migration was impaired by LPS, whereas it significantly increased after addition of EMD and HA. Conclusions EMD and HA are advantageous biomaterials that individually generate strong directional migratory keratinocyte and osteoblast response. Their combination also enhances cell viability, and anti-inflammatory and migratory abilities to promote healing specially under LPS inflammatory stimulus. Future in vivo and animal research is necessary to further characterize the effect of EMD and HA on periodontal regeneration. Clinical relevance The use of EMD in conjunction with HA resulted in a reduction of inflammation and improvement of tissue healing at wound sites. Both biomaterials combined may potentially improve the effectiveness of bone regeneration in periodontal bone defects, pointing to the potential clinical relevance of both materials in regenerative periodontal surgery.
Collapse
Affiliation(s)
- Liza L Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland. .,Laboratory of Applied Periodontal and Peri-Implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | - Laura Annasohn
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.,Laboratory of Applied Periodontal and Peri-Implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.,Laboratory of Applied Periodontal and Peri-Implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
4
|
Özçelik H, Batool F, Corre M, Garlaschelli A, Conzatti G, Stutz C, Petit C, Delpy E, Zal F, Leize-Zal E, Huck O. Characterization of a hyaluronic acid-based hydrogel containing an extracellular oxygen carrier (M101) for periodontitis treatment: An in vitro study. Int J Pharm 2021; 605:120810. [PMID: 34144138 DOI: 10.1016/j.ijpharm.2021.120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
Periodontitis is an inflammatory disease associated with anaerobic bacteria leading to the destruction of tooth-supporting tissues. Porphyromonas gingivalis is a keystone anaerobic pathogen involved in the development of severe lesions. Periodontal treatment aims to suppress subgingival biofilms and to restore tissue homeostasis. However, hypoxia impairs wound healing and promotes bacterial growth within periodontal pocket. This study aimed to evaluate the potential of local oxygen delivery through the local application of a hydrogel containing Arenicola marina's hemoglobin (M101). To this end, a hydrogel (xanthan (2%), hyaluronic acid (1%)) containing M101 (1-2 g/L) (Xn(2%)-HA(1%)-M101) was prepared and characterized. Rheological tests revealed the occurrence of high deformation without the loss of elastic properties. Dialysis experiment revealed that incorporation of M101 within the gel did not modify its oxygen transportation properties. Samples of release media of the gels (1 g/L (10%) and 2 g/L (10%) M101) decreased significantly the growth of P. gingivalis after 24 h validating its antibacterial effect. Metabolic activity measurement confirmed the cytocompatibility of Xn(2%)-HA(1%)-M101. This study suggests the therapeutic interest of Xn(2%)-HA(1%)-M101 gel to optimize treatment of periodontitis with a non-invasive approach.
Collapse
Affiliation(s)
- Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | | | | | - Guillaume Conzatti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Eric Delpy
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | - Franck Zal
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | | | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
5
|
Improved in vitro models for preclinical drug and formulation screening focusing on 2D and 3D skin and cornea constructs. Eur J Pharm Biopharm 2017; 126:57-66. [PMID: 29191717 DOI: 10.1016/j.ejpb.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 01/15/2023]
Abstract
The present overview deals with current approaches for the improvement of in vitro models for preclinical drug and formulation screening which were elaborated in a joint project at the Center of Pharmaceutical Engineering of the TU Braunschweig. Within this project a special focus was laid on the enhancement of skin and cornea models. For this reason, first, a computation-based approach for in silico modeling of dermal cell proliferation and differentiation was developed. The simulation should for example enhance the understanding of the performed 2D in vitro tests on the antiproliferative effect of hyperforin. A second approach aimed at establishing in vivo-like dynamic conditions in in vitro drug absorption studies in contrast to the commonly used static conditions. The reported Dynamic Micro Tissue Engineering System (DynaMiTES) combines the advantages of in vitro cell culture models and microfluidic systems for the emulation of dynamic drug absorption at different physiological barriers and, later, for the investigation of dynamic culture conditions. Finally, cryopreserved shipping was investigated for a human hemicornea construct. As the implementation of a tissue-engineering laboratory is time-consuming and cost-intensive, commercial availability of advanced 3D human tissue is preferred from a variety of companies. However, for shipping purposes cryopreservation is a challenge to maintain the same quality and performance of the tissue in the laboratory of both, the provider and the customer.
Collapse
|
6
|
Fujioka-Kobayashi M, Müller HD, Mueller A, Lussi A, Sculean A, Schmidlin PR, Miron RJ. In vitro effects of hyaluronic acid on human periodontal ligament cells. BMC Oral Health 2017; 17:44. [PMID: 28093072 PMCID: PMC5240222 DOI: 10.1186/s12903-017-0341-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronic acid (HA) has been reported to have a positive effect on periodontal wound healing following nonsurgical and surgical therapy. However, to date, a few basic in vitro studies have been reported to investigating the potential of HA on human periodontal ligament (PDL) cell regeneration. Therefore, the aim of this study was to investigate the effect of HA on PDL cell compatibility, proliferation, and differentiation in vitro. Methods Either non-cross-linked (HA_ncl) or cross-linked (HA_cl) HA was investigated. Human PDL cells were seeded in 7 conditions as follows (1) Control tissue culture plastic (TCP) (2) dilution of HA_ncl (1:100), (3) dilution of HA_ncl (1:10), 4) HA_ncl directly coated onto TCP, (5) dilution of HA_cl (1:100), 6) dilution of HA_cl (1:10) and (7) HA_cl directly coated onto TCP. Samples were then investigated for cell viability using a live/dead assay, an inflammatory reaction using real-time PCR and ELISA for MMP2, IL-1 and cell proliferation via an MTS assay. Furthermore, the osteogenic potential of PDL cells was assessed by alkaline phosphatase(ALP) activity, collagen1(COL1) and osteocalcin(OCN) immunostaining, alizarin red staining, and real-time PCR for genes encoding Runx2, COL1, ALP, and OCN. Results Both HA_ncl and HA_cl showed high PDL cell viability (greater than 90%) irrespective of the culturing conditions. Furthermore, no significant difference in both mRNA and protein levels of proinflammatory cytokines, including MMP2 and IL-1 expression was observed. Both diluted HA_ncl and HA_cl significantly increased cell numbers compared to the controlled TCP samples at 3 and 5 days. HA_ncl and HA_cl in standard cell growth media significantly decreased ALP staining, COL1 immunostaining and down-regulated early osteogenic differentiation, including Runx2, COL1, and OCN mRNA levels when compared to control samples. When osteogenic differentiation medium (ODM) was added, interestingly, the expression of early osteogenic markers increased by demonstrating higher levels of COL1 and ALP expression; especially in HA 1:10 diluted condition. Late stage osteogenic markers remained inhibited. Conclusions Both non-cross-linked and cross-linked HA maintained high PDL cell viability, increased proliferation, and early osteogenic differentiation. However, HA was consistently associated with a significant decrease in late osteogenic differentiation of primary human PDL cells. Future in vitro and animal research is necessary to further characterize the effect of HA on periodontal regeneration.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Heinz-Dieter Müller
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Mueller
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland. .,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential. J Clin Med 2016; 5:jcm5120112. [PMID: 27916889 PMCID: PMC5184785 DOI: 10.3390/jcm5120112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9), one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1) control tissue culture plastic, (2) HA alone, and (3) HA with rhBMP9 (100 ng/mL). Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP) activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN) at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1) HA may serve as a potential carrier for various growth factors, and (2) rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo.
Collapse
|
8
|
Paulini F, Vilela JM, Chiti MC, Donnez J, Jadoul P, Dolmans MM, Amorim CA. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33:425-32. [DOI: 10.1016/j.rbmo.2016.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
|
9
|
Hyaluronan drug delivery systems are promising for cancer therapy because of their selective attachment, enhanced uptake, and superior efficacy. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-015-0180-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci 2014; 21:100. [PMID: 25358954 PMCID: PMC4226915 DOI: 10.1186/s12929-014-0100-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Hyaluronan (HA) is abundantly expressed in several human tissues and a variety of roles for HA has been highlighted. Particularly relevant for tissue repair, HA is actively produced during tissue injury, as widely evidenced in wound healing investigations. In the heart HA is involved in physiological functions, such as cardiac development during embryogenesis, and in pathological conditions including atherosclerosis and myocardial infarction. Moreover, owing to its relevant biological properties, HA has been widely used as a biomaterial for heart regeneration after a myocardial infarction. Indeed, HA and its derivatives are biodegradable and biocompatible, promote faster healing of injured tissues, and support cells in relevant processes including survival, proliferation, and differentiation. Injectable HA-based therapies for cardiovascular disease are gaining growing attention because of the benefits obtained in preclinical models of myocardial infarction. HA-based hydrogels, especially as a vehicle for stem cells, have been demonstrated to improve the process of cardiac repair by stimulating angiogenesis, reducing inflammation, and supporting local and grafted cells in their reparative functions. Solid-state HA-based scaffolds have been also investigated to produce constructs hosting mesenchymal stem cells or endothelial progenitor cells to be transplanted onto the infarcted surface of the heart. Finally, applying an ex-vivo mechanical stretching, stem cells grown in HA-based 3D scaffolds can further increase extracellular matrix production and proneness to differentiate into muscle phenotypes, thus suggesting a potential strategy to create a suitable engineered myocardial tissue for cardiac regeneration.
Collapse
Affiliation(s)
- Francesca Bonafè
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Marco Govoni
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy.
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", DEI, University of Bologna, Cesena, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Marcello Caldarera
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Carlo Guarnieri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
11
|
Dahan N, Zarbiv G, Sarig U, Karram T, Hoffman A, Machluf M. Porcine Small Diameter Arterial Extracellular Matrix Supports Endothelium Formation and Media Remodeling Forming a Promising Vascular Engineered Biograft. Tissue Eng Part A 2012; 18:411-22. [DOI: 10.1089/ten.tea.2011.0173] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nitsan Dahan
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gabriel Zarbiv
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Udi Sarig
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Micro Vascular Surgery, Rambam Hospital, Haifa, Israel
| | - Aaron Hoffman
- Department of Micro Vascular Surgery, Rambam Hospital, Haifa, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
McBane JE, Ebadi D, Sharifpoor S, Labow RS, Santerre JP. Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane: Two-dimensional films vs. three-dimensional scaffolds. Acta Biomater 2011; 7:115-22. [PMID: 20728587 DOI: 10.1016/j.actbio.2010.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/18/2023]
Abstract
A degradable, polar, hydrophobic, ionic polyurethane (D-PHI), with physical properties comparable to those of peripheral arterial vascular tissue, was evaluated for monocyte interactions with two different physical forms: two-dimensional films and three-dimensional porous scaffolds. Monocytes, isolated from human whole blood, were seeded onto D-PHI films and scaffolds, and differentiated to monocyte-derived macrophages (MDM) for up to 28 days. The effect of surface structure on the MDM phenotype was assessed by assaying: cell attachment (DNA), activation (intracellular protein expression, esterase and acid phosphatase (AP) activity) as well as pro- and anti-inflammatory cytokines (TNF-α and IL-10, respectively). The cells on scaffolds exhibited an initial peak in total protein synthesized per DNA at 3 days; however, both substrates generated similar protein levels per DNA at all other time points. While scaffolds generated more esterase and AP per cell than for films, the cells on films expressed significantly more of these two proteins relative to their total protein produced. At day 7 (acute phase of monocyte activation), cells on films were significantly more activated than monocytes on the scaffolds as assessed by cell morphology and tumor necrosis factor-α and interleukin-10 levels. Histological analysis of scaffolds showed that cells were able to migrate throughout the three-dimensional matrix. By inducing a low inflammatory, high wound-healing phenotype monocyte, the negative effects of the foreign body reaction in vivo may be controlled in a manner possible to direct the vascular tissue cells into the appropriate functional phenotypes necessary for successful tissue engineering.
Collapse
|