1
|
Politikou O, Frueh FS, Greminger M, Besmens IS, Freddi G, Alessandrino A, Calcagni M. Digital nerve reconstruction with a new composite silk fibroin nerve conduit. J Peripher Nerv Syst 2025; 30:e12675. [PMID: 39592390 DOI: 10.1111/jns.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND AND AIMS Peripheral nerve injuries often require bridging when direct repair is not feasible. Nerve autografts are the gold standard, but they can lead to donor site morbidity. Silk fibroin-based nerve conduits, like the novel SILKBridge, offer a promising alternative. This pilot study evaluates the mid-term outcomes of the first in-human digital nerve reconstruction using the SILKBridge, focusing on sensory recovery, complication rates, patient-reported outcomes, and biological integration. METHODS This study included four patients with digital nerve defects reconstructed using the SILKBridge. Clinical assessments included two-point discrimination, Semmes-Weinstein monofilament testing, and pain evaluation using the Numeric Rating Scale. Sonographic assessments were also performed to evaluate the conduit's biointegration and potential complications. RESULTS At a mean follow-up of 32 months, all patients demonstrated satisfactory sensory recovery and reported minimal to no pain. Sonographic assessments confirmed effective biointegration with no signs of inflammation or scarring. INTERPRETATION The mid-term evaluation of the first in-human digital nerve reconstruction with the SILKBridge revealed safety, efficiency, and favorable biocompatibility properties. Further studies with larger cohorts are needed to validate these findings and compare them with other nerve repair methods.
Collapse
Affiliation(s)
- Olga Politikou
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Martina Greminger
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Inga S Besmens
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Leonardi F, Simonazzi B, Martini FM, D’Angelo P, Foresti R, Botti M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Vet Sci 2024; 11:368. [PMID: 39195822 PMCID: PMC11360824 DOI: 10.3390/vetsci11080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, there has been a growing interest in 3D printing technology within the field of bioengineering. This technology offers the ability to create devices with intricate macro- and micro-geometries, as well as specific models. It has particularly gained attention for its potential in personalized medicine, allowing for the production of organ or tissue models tailored to individual patient needs. Further, 3D printing has opened up possibilities to manufacture structures that can substitute, complement, or enhance damaged or dysfunctional organic parts. To apply 3D printing in the medical field, researchers have studied various materials known as biomaterials, each with distinct chemical and physical characteristics. These materials fall into two main categories: hard and soft materials. Each biomaterial needs to possess specific characteristics that are compatible with biological systems, ensuring long-term stability and biocompatibility. In this paper, we aim to review some of the materials used in the biomedical field, with a particular focus on those utilized in veterinary medicine and ophthalmology. We will discuss the significant findings from recent scientific research, focusing on the biocompatibility, structure, applicability, and in vitro and in vivo biological characteristics of two hard and four soft materials. Additionally, we will present the current state and prospects of veterinary ophthalmology.
Collapse
Affiliation(s)
- Fabio Leonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Barbara Simonazzi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Filippo Maria Martini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Pasquale D’Angelo
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| | - Ruben Foresti
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
- Department of Medicine and Surgery, University of Parma, 43123 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43123 Parma, Italy
| | - Maddalena Botti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| |
Collapse
|
3
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Adelfio M, Bonzanni M, Callen GE, Paster BJ, Hasturk H, Ghezzi CE. A physiologically relevant culture platform for long-term studies of in vitro gingival tissue. Acta Biomater 2023; 167:321-334. [PMID: 37331612 PMCID: PMC10528240 DOI: 10.1016/j.actbio.2023.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
There is a clinical need to understand the etiologies of periodontitis, considering the growing socio-economic impact of the disease. Despite recent advances in oral tissue engineering, experimental approaches have failed to develop a physiologically relevant gingival model that combines tissue organization with salivary flow dynamics and stimulation of the shedding and non-shedding oral surfaces. Herein, we develop a dynamic gingival tissue model composed of a silk scaffold, replicating the cyto-architecture and oxygen profile of the human gingiva, along with a saliva-mimicking medium that reflected the ionic composition, viscosity, and non-Newtonian behavior of human saliva. The construct was cultured in a custom designed bioreactor, in which force profiles on the gingival epithelium were modulated through analysis of inlet position, velocity and vorticity to replicate the physiological shear stress of salivary flow. The gingival bioreactor supported the long-term in vivo features of the gingiva and improved the integrity of the epithelial barrier, critical against the invasion of pathogenic bacteria. Furthermore, the challenge of the gingival tissue with P. gingivalis lipopolysaccharide, as an in vitro surrogate for microbial interactions, indicated a greater stability of the dynamic model in maintaining tissue homeostasis and, thus, its applicability in long-term studies. The model will be integrated into future studies with the human subgingival microbiome to investigate host-pathogen and host-commensal interactions. STATEMENT OF SIGNIFICANCE: The major societal impact of human microbiome had reverberated up to the establishment of the Common Fund's Human Microbiome Project, that has the intent of studying the role of microbial communities in human health and diseases, including periodontitis, atopic dermatitis, or asthma and inflammatory bowel disease. In addition, these chronic diseases are emergent drivers of global socioeconomic status. Not only common oral diseases have been shown to be directly correlated with several systemic conditions, but they are differentially impacting some racial/ethnic and socioeconomic groups. To address this growing social disparity, the development of in vitro gingival model would provide a time and cost-effective experimental platform, able to mimic the spectrum of periodontal disease presentation, for the identification of predictive biomarkers for early-stage diagnosis.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - M Bonzanni
- Department of Neuroscience, School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - B J Paster
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - H Hasturk
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
5
|
Kerzner B, Fortier LM, Swindell HW, McCormick JR, Kasson LB, Hevesi M, LaPrade RF, Mandelbaum BR, Chahla J. An Update on the Use of Orthobiologics Combined with Corrective Osteotomies for Osteoarthritis: Osteotomy Site and Intra-Articular Efficacy. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Hartigan D, Adelfio M, Shutt ME, Jones SM, Patel S, Marchand JT, McGuinness PD, Buchholz BO, Ghezzi CE. In Vitro Nasal Tissue Model for the Validation of Nasopharyngeal and Midturbinate Swabs for SARS-CoV-2 Testing. ACS OMEGA 2022; 7:12193-12201. [PMID: 35449955 PMCID: PMC9016850 DOI: 10.1021/acsomega.2c00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/21/2023]
Abstract
Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, such as the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g., nasopharyngeal and midturbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity worldwide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous preclinical and clinical validation studies that are costly and time-consuming (i.e., months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and midturbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pickup and release and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assay, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs, and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucuses for both swabs. To conclude, we developed an in vitro nasal tissue model that corroborated previous swab performance data from clinical studies; this model will provide to researchers a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.
Collapse
Affiliation(s)
- Devon
R. Hartigan
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Miryam Adelfio
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Molly E. Shutt
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Stephanie M. Jones
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Shreya Patel
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Joshua T. Marchand
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Pamela D. McGuinness
- Massachusetts
Medical Device Development Center (M2D2), University of Massachusetts—Lowell, 110 Canal St. Lowell, Massachusetts 01852, United States
| | - Bryan O. Buchholz
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Chiara E. Ghezzi
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
- E-mail:
| |
Collapse
|
7
|
Abstract
Microbial communities are eubiotic ecosystems that interact dynamically and synergistically with the human body. Imbalances in these interactions may cause dysbiosis by enhancing the occurrence of inflammatory conditions, such as periodontal or inflammatory bowel diseases. However, the mechanisms that lie behind eubiosis-dysbiosis transitions are still unclear and constantly being redefined. While the societal impact of these diseases is steadily increasing, the lack of a clear understanding behind the onset of the inflammatory conditions prevents the proper clinical strategies from being formulated. Although preclinical and clinical models and short-term planar in vitro cultures represent superb research tools, they are still lacking human relevance and long-term use. Bioreactors and organs-on-a-chip have attracted interest because of their ability to recreate and sustain the physical, structural, and mechanical features of the native environment, as well as to support long-term coculture of mammalian cells and the microbiome through modulation of pH and oxygen gradients. Existing devices, however, are still under development to sustain the microbiome-host coculture over long periods of time. In this scenario, to understand disease triggers and develop therapeutics, research efforts should command the development of three-dimensional constructs that would allow the investigation of processes underlying the microbial community assembly and how microorganisms influence host traits in both acute and chronic conditions.
Collapse
Affiliation(s)
- Miryam Adelfio
- University of Massachusetts-Lowell, Department of Biomedical Engineering, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Chiara Elia Ghezzi
- University of Massachusetts-Lowell, Department of Biomedical Engineering, One University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
8
|
3D Printed Scaffold Based on Type I Collagen/PLGA_TGF-β1 Nanoparticles Mimicking the Growth Factor Footprint of Human Bone Tissue. Polymers (Basel) 2022; 14:polym14050857. [PMID: 35267680 PMCID: PMC8912467 DOI: 10.3390/polym14050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
In bone regenerative strategies, the controlled release of growth factors is one of the main aspects for successful tissue regeneration. Recent trends in the drug delivery field increased the interest in the development of biodegradable systems able to protect and transport active agents. In the present study, we designed degradable poly(lactic-co-glycolic)acid (PLGA) nanocarriers suitable for the release of Transforming Growth Factor-beta 1 (TGF-β1), a key molecule in the management of bone cells behaviour. Spherical TGF-β1-containing PLGA (PLGA_TGF-β1) nanoparticles (ca.250 nm) exhibiting high encapsulation efficiency (ca.64%) were successfully synthesized. The TGF-β1 nanocarriers were subsequently combined with type I collagen for the fabrication of nanostructured 3D printed scaffolds able to mimic the TGF-β1 presence in the human bone extracellular matrix (ECM). The homogeneous hybrid formulation underwent a comprehensive rheological characterisation in view of 3D printing. The 3D printed collagen-based scaffolds (10 mm × 10 mm × 1 mm) successfully mimicked the TGF-β1 presence in human bone ECM as assessed by immunohistochemical TGF-β1 staining, covering ca.3.4% of the whole scaffold area. Moreover, the collagenous matrix was able to reduce the initial burst release observed in the first 24 h from about 38% for the PLGA_TGF-β1 alone to 14.5%, proving that the nanocarriers incorporation into collagen allows achieving sustained release kinetics.
Collapse
|
9
|
Ghezzi CE, Hartigan DR, Hardick JP, Gore R, Adelfio M, Diaz AR, McGuinness PD, Robinson ML, Buchholz BO, Manabe YC. Preclinical Validation of a Novel Injection-Molded Swab for the Molecular Assay Detection of SARS-CoV-2. Diagnostics (Basel) 2022; 12:diagnostics12010206. [PMID: 35054373 PMCID: PMC8775180 DOI: 10.3390/diagnostics12010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.
Collapse
Affiliation(s)
- Chiara E. Ghezzi
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
- Correspondence: ; Tel.: +1-(978)-934-3278
| | - Devon R. Hartigan
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Justin P. Hardick
- Division of Infectious Diseases, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.P.H.); (M.L.R.); (Y.C.M.)
| | - Rebecca Gore
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Miryam Adelfio
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Anyelo R. Diaz
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Pamela D. McGuinness
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Matthew L. Robinson
- Division of Infectious Diseases, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.P.H.); (M.L.R.); (Y.C.M.)
| | - Bryan O. Buchholz
- Biomedical Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA; (D.R.H.); (R.G.); (M.A.); (A.R.D.); (P.D.M.); (B.O.B.)
| | - Yukari C. Manabe
- Division of Infectious Diseases, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.P.H.); (M.L.R.); (Y.C.M.)
| |
Collapse
|
10
|
In Vitro Nasal Tissue Model for the Validation of Nasopharyngeal and Mid-turbinate Swabs for SARS-CoV-2 Testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34845461 DOI: 10.1101/2021.11.22.21266713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, as in the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g. nasopharyngeal and mid-turbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity world-wide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous pre-clinical and clinical validation studies that are costly and time consuming ( i . e . months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and mid-turbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pick-up and release, and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assays, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucus for both swabs. To conclude, we developed an in vitro nasal tissue model, that corroborated previous swab performance data from clinical studies, with the potential of providing researchers with a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.
Collapse
|
11
|
Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. MATERIALS 2020; 13:ma13143097. [PMID: 32664418 PMCID: PMC7411886 DOI: 10.3390/ma13143097] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To review the current basic science and clinical literature on mesenchymal stem cell (MSC) therapy for articular cartilage defects and osteoarthritis of the knee. RECENT FINDINGS MSCs derived from bone marrow, adipose, and umbilical tissue have the capacity for self-renewal and differentiation into the chondrocyte lineage. In theory, MSC therapy may help restore cartilage focally or diffusely where nascent regenerative potential in the intra-articular environment is limited. Over the last several years, in vitro and animal studies have elucidated the use of MSCs in isolation as injectables, in combination with biological delivery media and scaffolding, and as surgical adjuvants for cartilage regeneration and treatment of knee degenerative conditions. More recently, clinical and translational literature has grown more convincing from early descriptive case series to randomized controlled trials showing promise in efficacy and safety. Studies describing MSC for knee cartilage regeneration applications are numerous and varied in quality. Future research directions should include work on elucidating optimal cell concentration and dosing, as well as standardization in methodology and reporting in prospective trials. Backed by promise from in vitro and animal studies, preliminary clinical evidence on MSC therapy shows promise as a nonoperative therapeutic option or an adjuvant to existing surgical cartilage restoration techniques. While higher quality evidence to support MSC therapy has emerged over the last several years, further refinement of methodology will be necessary to support its routine clinical use.
Collapse
|
13
|
Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng 2020; 11:2041731420943839. [PMID: 32922718 PMCID: PMC7457700 DOI: 10.1177/2041731420943839] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Cartilage injuries are typically caused by trauma, chronic overload, and autoimmune diseases. Owing to the avascular structure and low metabolic activities of chondrocytes, cartilage generally does not self-repair following an injury. Currently, clinical interventions for cartilage injuries include chondrocyte implantation, microfracture, and osteochondral transplantation. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Stem cell therapies, especially mesenchymal stem cell (MSCs) therapies, were found to be a feasible strategy in the treatment of cartilage injuries. MSCs can easily be isolated from mesenchymal tissue and be differentiated into chondrocytes with the support of chondrogenic factors or scaffolds to repair damaged cartilage tissue. In this review, we highlighted the full success of cartilage repair using MSCs, or MSCs in combination with chondrogenic factors and scaffolds, and predicted their pros and cons for prospective translation to clinical practice.
Collapse
Affiliation(s)
- Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| |
Collapse
|
14
|
Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, Wang DA. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. Macromol Biosci 2019; 20:e1900278. [PMID: 31800166 DOI: 10.1002/mabi.201900278] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Repair and regeneration of articular cartilage lesions have always been a major challenge in the medical field due to its peculiar structure (e.g., sparsely distributed chondrocytes, no blood supply, no nerves). Articular cartilage tissue engineering is considered as one promising strategy to achieve reconstruction of cartilage. With this perspective, the articular cartilage tissue engineering has been widely studied. Here, the recent progress of articular cartilage tissue engineering is reviewed. The ad hoc therapeutic cells and growth factors for cartilage regeneration are summarized and discussed. Various types of bio/macromolecular scaffolds together with their pros and cons are also reviewed and elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, P. R. China
| | - Feng Chen
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yutai Sun
- School of Information Engineering, Shandong Vocational College of Science & Technology, Weifang, 261053, P. R. China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Aiyu Ji
- Department of Traumatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| |
Collapse
|
15
|
Apinun J, Honsawek S, Kuptniratsaikul S, Jamkratoke J, Kanokpanont S. Osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells encapsulated in Thai silk fibroin/collagen hydrogel: a pilot study in vitro. ASIAN BIOMED 2019; 12:273-279. [DOI: 10.1515/abm-2019-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Abstract
Background
Silk fibroin (SF) can be processed into a hydrogel. SF/collagen hydrogel may be a suitable biomaterial for bone tissue engineering.
Objectives
To investigate in vitro biocompatibility and osteogenic potential of encapsulated rat bone marrow-derived mesenchymal stem cells (rat MSCs) in an injectable Thai SF/collagen hydrogel induced by oleic acid–poloxamer 188 surfactant mixture in an in vitro pilot study.
Methods
Rat MSCs were encapsulated in 3 groups of hydrogel scaffolds (SF, SF with 0.05% collagen [SF/0.05C], and SF with 0.1% collagen [SF/0.1C]) and cultured in a growth medium and an osteogenic induction medium. DNA, alkaline phosphatase (ALP) activity, and calcium were assayed at periodically for up to 5 weeks. After 6 weeks of culture the cells were analyzed by scanning electron microscopy and energy dispersive spectroscopy.
Results
Although SF hydrogel with collagen seems to have less efficiency to encapsulate rat MSCs, their plateau phase growth in all hydrogels was comparable. Inability to maintain cell viability as cell populations declined over 1–5 days was observed. Cell numbers then plateaued and were maintained until day 14 of culture. ALP activity and calcium content of rat MSCs in SF/collagen hydrogels were highest at day 21. An enhancing effect of collagen combined with the hydrogel was observed for proliferation and matrix formation; however, benefits of the combination on osteogenic differentiation and biomineralization are as yet unclear.
Conclusion
Rat MSCs in SF and SF/collagen hydrogels showed osteogenic differentiation. Accordingly, these hydrogels may serve as promising scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jirun Apinun
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Somsak Kuptniratsaikul
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| | | | - Sorada Kanokpanont
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
16
|
Varma R, Aoki FG, Soon K, Karoubi G, Waddell TK. Optimal biomaterials for tracheal epithelial grafts: An in vitro systematic comparative analysis. Acta Biomater 2018; 81:146-157. [PMID: 30268918 DOI: 10.1016/j.actbio.2018.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Tracheal injury, stenosis, and malignancy demand tracheal reconstruction, which often fails due to the lack of a functioning epithelium. We performed an extensive comparative analysis to determine optimal biomaterials for developing tracheal epithelial grafts with mucociliary function. We screened Hyaluronan-Poly(Ethylene Glycol), Chitosan-Collagen, Collagen Vitrigel Membrane, Fibrin Glue, Silk Fibroin, and Gelatin based on various parameters including mechanical strength, bulk degradation, cell attachment, spreading, metabolic activity, focal adhesion formation, and differentiation into ciliated and goblet cells. Silk Fibroin had significantly higher tensile strength (21.23 ± 4.42 MPa), retained 50% of its mass across 5 weeks, allowed 80-100% cell spreading and increasing metabolic activity across 10 days, focal adhesion formation within 2 h, and differentiation into 5.9 ± 2.6% goblet cells. Silk Fibroin, however, led to poor ciliation, producing 5.5 ± 3.9% ciliated cells, whereas Collagen Vitrigel Membrane promoted excellent ciliation. To capitalize on the mechanical and differentiation benefits of its respective components, we developed a composite biomaterial of Silk Fibroin and Collagen Vitrigel Membrane (SF-CVM), which demonstrated enhanced maturation into 20.6 ± 1.7% ciliated and 5.6 ± 1.0% goblet cells. Development of biomaterials-based airway epithelial grafts that provide desirable mechanics and differentiation is a major step towards treatment of airway disease. STATEMENT OF SIGNIFICANCE: Tracheal blockage, injury, and malignancy greater than 50% of the adult tracheal length cannot be safely resected. Tracheal replacement is one approach, but a major cause of transplant failure is the lack of a functioning epithelium. While tissue engineering for tracheal regeneration using biomaterials is promising, there is currently no gold standard. Therefore, we performed a systematic comparative study to characterize relevant materials for generating a biomaterials-based airway epithelial graft. We developed a composite biomaterial intended for surgical implantation providing tensile strength, slow biodegradation, and optimal support for differentiation of mature epithelia. This is a significant step augmenting current state-of-the-art methods for airway surgeries, laryngeal reconstruction, and tracheal tissue engineering.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada.
| | - Fabio G Aoki
- Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Kayla Soon
- Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Golnaz Karoubi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada.
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
Hong H, Huh MI, Park SM, Lee KP, Kim HK, Kim DS. Decellularized corneal lenticule embedded compressed collagen: toward a suturable collagenous construct for limbal reconstruction. Biofabrication 2018; 10:045001. [PMID: 29978836 DOI: 10.1088/1758-5090/aad1a4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, compressed collagen has attracted much attention as a potential alternative for a limbal epithelial stem cell (LESC) carrier to treat limbal stem cell deficiency (LSCD), in that it can provide mechanically improved collagen fibrillar structures compared to conventional collagen hydrogel. However, its clinical efficacy as an LESC carrier has not yet been studied through in vivo transplantation due to limited mechanical strength that cannot withstand a force induced by surgical suturing and low resistance to enzymatic degradation. This study firstly presents a suturable LESC carrier based on compressed collagen in the form of a biocomposite. The biocomposite was achieved by integrating a decellularized corneal lenticule, which is a decellularized stromal tissue obtained from corneal refractive surgery, inside a compressed collagen to form a sandwich structure. A suture retention test verified that the biocomposite has a much higher suture retention strength (0.56 ± 0.12 N) compared to the compressed collagen (0.02 ± 0.01 N). The biocomposite also exhibited more than 3 times higher resistance to enzymatic degradation, indicating long-term stability after transplantation. In vitro cell culture results revealed that the biocomposite effectively supported the expansion and stratification of the LESCs with expressions of putative stem cell and differentiated corneal epithelial cell markers. Finally, the biocomposite verified its clinical efficacy by stably delivering the LESCs onto an eye of a rabbit model of LSCD and effectively reconstructing the ocular surface.
Collapse
Affiliation(s)
- Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater 2017; 3:129-138. [PMID: 29744450 PMCID: PMC5935759 DOI: 10.1016/j.bioactmat.2017.08.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
Bone is consisted of bone matrix, cells and bioactive factors, and bone matrix is the combination of inorganic minerals and organic polymers. Type I collagen fibril made of five triple-helical collagen chains is the main organic polymer in bone matrix. It plays an important role in the bone formation and remodeling process. Moreover, collagen is one of the most commonly used scaffold materials for bone tissue engineering due to its excellent biocompatibility and biodegradability. However, the low mechanical strength and osteoinductivity of collagen limit its wider applications in bone regeneration field. By incorporating different biomaterials, the properties such as porosity, structural stability, osteoinductivity, osteogenicity of collagen matrixes can be largely improved. This review summarizes and categorizes different kinds of biomaterials including bioceramic, carbon and polymer materials used as components to fabricate collagen based composite scaffolds for bone regeneration. Moreover, the possible directions of future research and development in this field are also proposed. Materials to incorporate collagen scaffolds for bone regeneration are summarized. Bioceramics, carbon and polymer materials can increase the mechanical properties and osteogenesis. The limitation of collagen based materials is analyzed and the prospects of future research are presented.
Collapse
Affiliation(s)
- Dawei Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Xiaowei Wu
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jingdi Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
19
|
Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 2017; 213:87-93. [DOI: 10.1016/j.amjsurg.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 10/20/2022]
|
20
|
Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D System. MATERIALS 2016; 9:ma9060477. [PMID: 28773595 PMCID: PMC5456744 DOI: 10.3390/ma9060477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
Mineralized collagen gels have been developed as in vitro models to better understand the mechanisms regulating the calcification process and the behavior of a variety of cell types. The vast majority of data are related to stem cells and to osteoblast-like cells, whereas little information is available for dermal fibroblasts, although these cells have been associated with ectopic calcification and consequently to a number of pathological conditions. Therefore, we developed and characterized an enzymatically mineralized collagen gel in which fibroblasts were encapsulated within the 3D structure. MgCl2 was also added during gel polymerization, given its role as (i) modulator of ectopic calcification; (ii) component of biomaterials used for bone replacement; and (iii) constituent of pathological mineral deposits. Results demonstrate that, in a short time, an enzymatically mineralized collagen gel can be prepared in which mineral deposits and viable cells are homogeneously distributed. MgCl2 is present in mineral deposits and significantly affects collagen fibril assembly and organization. Consequently, cell shape and the ability of fibroblasts to retract collagen gels were modified. The development of three-dimensional (3D) mineralized collagen matrices with both different structural features and mineral composition together with the use of fibroblasts, as a prototype of soft connective tissue mesenchymal cells, may pave new ways for the study of ectopic calcification.
Collapse
|
21
|
Calabrese R, Raia N, Huang W, Ghezzi CE, Simon M, Staii C, Weiss AS, Kaplan DL. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. J Tissue Eng Regen Med 2016; 11:2549-2564. [DOI: 10.1002/term.2152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Rossella Calabrese
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Nicole Raia
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Wenwen Huang
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Marc Simon
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Cristian Staii
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Anthony S. Weiss
- School of Molecular Bioscience; University of Sydney; NSW Australia
- Charles Perkins Center; University of Sydney; NSW Australia
- Bosch Institute; University of Sydney; NSW Australia
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| |
Collapse
|