1
|
Sojakova D, Husakova J, Fejfarova V, Nemcova A, Jarosikova R, Kopp S, Lovasova V, Jude EB, Dubsky M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. Int J Mol Sci 2024; 25:10184. [PMID: 39337669 PMCID: PMC11431855 DOI: 10.3390/ijms251810184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Autologous cell therapy (ACT) is primarily used in diabetic patients with chronic limb-threatening ischemia (CLTI) who are not candidates for standard revascularization. According to current research, this therapy has been shown in some studies to be effective in improving ischemia parameters, decreasing the major amputation rate, and in foot ulcer healing. This review critically evaluates the efficacy of ACT in patients with no-option CLTI, discusses the use of mononuclear and mesenchymal stem cells, and compares the route of delivery of ACT. In addition to ACT, we also describe the use of new revascularization strategies, e.g., nanodiscs, microbeads, and epigenetics, that could enhance the therapeutic effect. The main aim is to summarize new findings on subcellular and molecular levels with the clinical aspects of ACT.
Collapse
Affiliation(s)
- Dominika Sojakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Jitka Husakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Andrea Nemcova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Radka Jarosikova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Simon Kopp
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Veronika Lovasova
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Edward B. Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK;
- Department of Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| | - Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| |
Collapse
|
2
|
Iram S, Rahman S, Choi I, Kim J. Insight into the function of tetranectin in human diseases: A review and prospects for tetranectin-targeted disease treatment. Heliyon 2024; 10:e23512. [PMID: 38187250 PMCID: PMC10770464 DOI: 10.1016/j.heliyon.2023.e23512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Tetranectin (TN), a serum protein, is closely associated with different types of cancers. TN binds plasminogen and promotes the proteolytic activation of plasminogen into plasmin, which suggests that TN is involved in remodeling the extracellular matrix and cancer tissues during cancer development. TN is also associated with other diseases, such as developmental disorders, cardiovascular diseases, neurological diseases, inflammation, and diabetes. Although the functional mechanism of TN in diseases is not fully elucidated, TN binds different proteins, such as structural protein, a growth factor, and a transcription regulator. Moreover, TN changes and regulates protein functions, indicating that TN-binding proteins mediate the association between TN and diseases. This review summarizes the current knowledge of TN-associated diseases and TN functions with TN-binding proteins in different diseases. In addition, potential TN-targeted disease treatment by inhibiting the interaction between TN and its binding proteins is discussed.
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, Bihar, 845401, India
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
5
|
Wang L, Cao Y, Shen Z, Li M, Zhang W, Liu Y, Zhang Y, Duan J, Ma Z, Sang S. 3D printed GelMA/carboxymethyl chitosan composite scaffolds for vasculogenesis. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lijing Wang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Wendong Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yating Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Zhuwei Ma
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
6
|
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14010132. [PMID: 35057028 PMCID: PMC8781797 DOI: 10.3390/pharmaceutics14010132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.
Collapse
|
7
|
Dong W, Song Z, Liu S, Yu P, Shen Z, Yang J, Yang D, Hu Q, Zhang H, Gu Y. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway. Front Bioeng Biotechnol 2021; 9:676409. [PMID: 34307320 PMCID: PMC8293919 DOI: 10.3389/fbioe.2021.676409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Application of synthetic or biological meshes is the main therapy for the repair and reconstruction of abdominal wall defects, a common disease in surgery. Currently, no ideal materials are available, and there is an urgent need to find appropriate ones to satisfy clinical needs. Electrospun scaffolds have drawn attention in soft tissue reconstruction. In this study, we developed a novel method to fabricate a composite electrospun scaffold using a thermoresponsive hydrogel, poly (N-isopropylacrylamide)-block-poly (ethylene glycol), and a biodegradable polymer, polylactic acid (PLA). This scaffold provided not only a high surface area/volume ratio and a three-dimensional fibrous matrix but also high biocompatibility and sufficient mechanical strength, and could simulate the native extracellular matrix and accelerate cell adhesion and proliferation. Furthermore, rat adipose-derived stem cells (ADSCs) were seeded in the composite electrospun scaffold to enhance the defect repair and regeneration by directionally inducing ADSCs into endothelial cells. In addition, we found early vascularization in the process was regulated by the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. In our study, overexpression of HIF-1α/VEGF in ADSCs using a lentivirus system promoted early vascularization in the electrospun scaffolds. Overall, we expect our composite biomimetic scaffold method will be applicable and useful in abdominal wall defect regeneration and repair in the future.
Collapse
Affiliation(s)
- Wenpei Dong
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Song
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipeng Shen
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Jianjun Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongchao Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, Plock JA, Calcagni M, Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 2020; 22:400-411. [PMID: 32507607 DOI: 10.1016/j.jcyt.2020.03.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.
Collapse
Affiliation(s)
- Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michelle McLuckie
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nadia Sanchez-Macedo
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Petra Wolint
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Luo Z, Dai Y, Chen M, Zhu C, Wu K, Li G, Shang X. Silencing of RBP‑JK promotes the differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells. Mol Med Rep 2019; 21:69-76. [PMID: 31746399 PMCID: PMC6896324 DOI: 10.3892/mmr.2019.10803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are important for postnatal angiogenesis and are suitable for use in construction of blood vessels by tissue engineering. The present study aimed to investigate the influence of recombination signal binding protein for immunoglobulin kappa J region (RBP-JK) on the differentiation of BM-MSCs into vascular endothelial cells, and to assess the underlying mechanisms. BM-MSCs were isolated and identified by flow cytometry. Lentiviral vectors encoding RBP-JK shRNA (shRBPJK) were constructed to knockdown RBP-JK expression and endothelial differentiation of BM-MSCs was induced. The experimental groups were treated with: empty lentiviral vector (vector group), growth factors (bFGF and VEGF; induced group), shRBPJK (shRBPJK group), and growth factors + shRBPJK (induced + shRBPJK group). The expression of endothelial markers, vascular endothelial growth factor receptor 2 (Flk-1), and von Willebrand factor (vWF) were detected by immunofluorescence. Additionally, in vitro blood vessel formation and phagocytosis were assessed using acetylated LDL, Dil complex and the underlying molecular mechanisms evaluated by western blotting. BM-MSCs were separated and transduced with shRBPJK to reduce RBP-JK expression. Compared with the vector group, the expression of the endothelial cell markers, Flk-1 and vWF, in vitro tubule formation, and phagocytosis ability increased, while the expression levels of p-AKT/AKT and p-NF-κB/NF-κB were significantly decreased (P<0.05) in the induced, shRBPJK, and induced + shRBPJK groups. Compared with the induced group, the expression of Flk-1 and vWF, the number of tubules, and phagocytosis were higher in the induced + shRBPJK group, while the expression levels of p-AKT/AKT and p-NF-κB/NF-κB were lower (P<0.05). Collectively, the present data indicated that silencing of RBP-JK promotes the differentiation of MSCs into vascular endothelial cells, and this process is likely regulated by AKT/NF-κB signaling.
Collapse
Affiliation(s)
| | - Yong Dai
- Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Chen
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Chen Zhu
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Kerong Wu
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Guoyuan Li
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xifu Shang
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
11
|
Jin L, Li P, Wang YC, Feng L, Xu R, Yang DB, Yao XH. Studies of Superb Microvascular Imaging and Contrast-Enhanced Ultrasonography in the Evaluation of Vascularization in Early Bone Regeneration. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:2963-2971. [PMID: 30945763 DOI: 10.1002/jum.15002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The aim of this study was to investigate value of superb microvascular imaging (SMI) and contrast-enhanced ultrasonography (CEUS) in evaluating the neovascularization of early bone regeneration. METHODS Twenty-five Sprague-Dawley male rats were implanted with recombinant human bone morphogenetic protein-2/calcium phosphate cement (rhBMP-2/) in the muscle space of the left hind limb near the femoral head to establish the rat model of intramuscular ectopic osteogenesis. Ultrasonography and pathologic analysis were performed on the 3rd, 7th, 14th, 21st, and 28th days after modeling. Two-dimensional ultrasonography, SMI, and CEUS were used to assess neovascularization and bone formation. RESULTS Pathologic examination showed that different levels of neovascularization were observed in the graft bone over time after modeling, which increased significantly from the 3rd to 14th day, and then gradually decreased. CEUS and SMI showed no obvious microvessels inside the graft bone on the 3rd day. On the 7th day after modeling, a small number of neovascular vessels were observed around the graft bone. On the 14th day, neovascularization was observed in both the peripheral and inner parts of the graft bone. The number of neovascular vessels inside the graft bone had decreased gradually by the 21st and 28th days. The results of SMI and CEUS indexes showed that the vascular index, peak intensity, enhancement intensity, and enhancement rate first increased and then decreased with time. Their peak points were found on the 14th day. Arrival time, time to peak, and enhancement time decreased gradually over time (P < .05). CONCLUSION The combined application of SMI and CEUS may be useful in evaluating the neovascularization of early osteoanagenesis.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ping Li
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ying-Chun Wang
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lan Feng
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Rong Xu
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - De-Bin Yang
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao-Hua Yao
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Donos N, Dereka X, Calciolari E. The use of bioactive factors to enhance bone regeneration: A narrative review. J Clin Periodontol 2019; 46 Suppl 21:124-161. [DOI: 10.1111/jcpe.13048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Donos
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| | - Xanthippi Dereka
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - Elena Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| |
Collapse
|
13
|
Pizzicannella J, Gugliandolo A, Orsini T, Fontana A, Ventrella A, Mazzon E, Bramanti P, Diomede F, Trubiani O. Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration. Front Physiol 2019; 10:512. [PMID: 31114512 PMCID: PMC6503111 DOI: 10.3389/fphys.2019.00512] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 01/15/2023] Open
Abstract
Bone regeneration represents still a challenge, in particular for calvarium defects. Recently, the development of biomaterials with the addiction of stem cells is giving promising results for the treatment of bone defects. In particular, it was demonstrated that scaffolds enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as conditioned medium (CM) and extracellular vesicles (EVs), may improve bone regeneration. Moreover, given the deep link between osteogenesis and angiogenesis, a successful approach must also take into consideration the development of vascularization. In this work we evaluated the bone regeneration capacity of a collagen membrane (3D-COL) enriched with human periodontal-ligament stem cells (hPDLSCs) and CM or EVs or EVs engineered with polyethylenimine (PEI-EVs) in rats subjected to a calvarial defect. We evaluated also their capacity to induce angiogenic factors. At first, in vitro results showed an increased expression of osteogenic markers in hPDLSCs cultured with the 3D-COL and PEI-EVs, associated also with the increased protein levels of Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). The increased expression of these proteins was confirmed also in vivo in rats implanted with the 3D-COL enriched with hPDLSCs and PEI-EVs. Moreover, histological examination evidenced in this group of rats the activation of bone regeneration and of the vascularization process. Also MicroCT imaging with morphometric analysis confirmed in rats transplanted with 3D-COL enriched with hPDLSCs and PEI-EVs an important regenerative process and a better integration level. All together, these results evidenced that the 3D-COL enriched with hPDLSCs and PEI-EVs may promote bone regeneration of calvaria defects, associated also with an increased vascularization.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Tiziana Orsini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Ventrella
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030551. [PMID: 30696066 PMCID: PMC6387109 DOI: 10.3390/ijms20030551] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) can be a useful cell resource for developing biological treatment strategies for bone repair and regeneration, and their therapeutic applications hinge on an understanding of their physiological characteristics. N6-methyl-adenosine (m6A) is the most prevalent internal chemical modification of mRNAs and has recently been reported to play important roles in cell lineage differentiation and development. However, little is known about the role of m6A modification in the cell differentiation of BMSCs. To address this issue, we investigated the expression of N6-adenosine methyltransferases (Mettl3 and Mettl14) and demethylases (Fto and Alkbh5) and found that Mettl3 was upregulated in BMSCs undergoing osteogenic induction. Furthermore, we knocked down Mettl3 and demonstrated that Mettl3 knockdown decreased the expression of bone formation-related genes, such as Runx2 and Osterix. The alkaline phosphatase (ALP) activity and the formation of mineralized nodules also decreased after Mettl3 knockdown. RNA sequencing analysis revealed that a vast number of genes affected by Mettl3 knockdown were associated with osteogenic differentiation and bone mineralization. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that the phosphatidylinositol 3-kinase/AKT (PI3K-Akt) signaling pathway appeared to be one of the most enriched pathways, and Western blotting results showed that Akt phosphorylation was significantly reduced after Mettl3 knockdown. Mettl3 has been reported to play an important role in regulating alternative splicing of mRNA in previous research. In this study, we found that Mettl3 knockdown not only reduced the expression of Vegfa but also decreased the level of its splice variants, vegfa-164 and vegfa-188, in Mettl3-deficient BMSCs. These findings might contribute to novel progress in understanding the role of epitranscriptomic regulation in the osteogenic differentiation of BMSCs and provide a promising perspective for new therapeutic strategies for bone regeneration.
Collapse
|
15
|
Lee E, Ko JY, Kim J, Park JW, Lee S, Im GI. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater Sci 2019; 7:4588-4602. [DOI: 10.1039/c9bm01037h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While bone has the capability to heal itself, there is a great difficulty in reconstituting large bone defects created by heavy trauma or the resection of malignant tumors.
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Juyoung Kim
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Songhee Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| |
Collapse
|
16
|
Wang W, Huang X, Lin W, Qiu Y, He Y, Yu J, Xi Y, Ye X. Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. Int J Mol Med 2018; 42:2538-2550. [PMID: 30106084 PMCID: PMC6192716 DOI: 10.3892/ijmm.2018.3810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
The unique hypoxic inflammatory microenvironment observed in the spinal cord following spinal cord injury (SCI) limits the survival and efficacy of transplanted bone mesenchymal stem cells (BMSCs). The aim of the present study was to determine whether hypoxic preconditioning (HP) increased the therapeutic effects of BMSC on SCI. BMSCs were pretreated with cobalt chloride (CoCl2) in vitro, and the proliferative apoptotic and migratory abilities of these hypoxic BMSCs (H‑BMSCs) were assessed. BMSCs and H‑BMSCs derived from green fluorescent protein (GFP) rats were transplanted into SCI rats in vivo. The neurological function, histopathology, inflammation, and number and migration of transplanted cells were examined. HP significantly enhanced BMSC migration (increased hypoxia inducible factor 1α and C‑X‑C motif chemokine receptor 4 expression) and tolerance to apoptotic conditions (decreased caspase‑3 and increased B‑cell lymphoma 2 expression) in vitro. In vivo, H‑BMSC transplantation significantly improved neurological function, decreased spinal cord damage and suppressed the inflammatory response associated with microglial activation. The number of GFP‑positive cells in the SCI core and peripheral region of H‑BMSC animals was increased compared with that in those of BMSC animals, suggesting that HP may increase the survival and migratory abilities of BMSCs and highlights their therapeutic potential for SCI.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Xiaodong Huang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Wenbo Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Yuanyuan Qiu
- Department of Respiration, Shanghai Electric Power Hospital, Shanghai 200050
| | - Yunfei He
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
- Department of Orthopedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou, Gansu 730050, P.R. China
| | - Jiangming Yu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Yanhai Xi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Xiaojian Ye
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| |
Collapse
|
17
|
Wang X, Wang G, Zingales S, Zhao B. Biomaterials Enabled Cell-Free Strategies for Endogenous Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:463-481. [PMID: 29897021 DOI: 10.1089/ten.teb.2018.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repairing bone defects poses a major orthopedic challenge because current treatments are constrained by the limited regenerative capacity of human bone tissue. Novel therapeutic strategies, such as stem cell therapy and tissue engineering, have the potential to enhance bone healing and regeneration, and hence may improve quality of life for millions of people. However, the ex vivo expansion of stem cells and their in vivo delivery pose technical difficulties that hamper clinical translation and commercial development. A promising alternative to cell delivery-based strategies is to stimulate or augment the inherent self-repair mechanisms of the patient to promote endogenous restoration of the lost/damaged bone. There is growing evidence indicating that increasing the endogenous regenerative potency of bone tissues for therapeutics will require the design and development of new generations of biomedical devices that provide key signaling molecules to instruct cell recruitment and manipulate cell fate for in situ tissue regeneration. Currently, a broad range of biomaterial-based deployment technologies are becoming available, which allow for controlled spatial presentation of biological cues required for endogenous bone regeneration. This article aims to explore the proposed concepts and biomaterial-enabled strategies involved in the design of cell-free endogenous techniques in bone regenerative medicine.
Collapse
Affiliation(s)
- Xiaojing Wang
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| | - Guowei Wang
- 3 Department of Stomatology, Laoshan Branch of No. 401 Hospital of the Chinese Navy , Qingdao, Shandong, P.R. China
| | - Sarah Zingales
- 4 Department of Chemistry and Biochemistry, Georgia Southern University , Savannah, Georgia
| | - Baodong Zhao
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| |
Collapse
|
18
|
Im GI. Stem Cell Therapy in Osteonecrosis of the Femoral Head. Hip Pelvis 2018; 30:135-137. [PMID: 30202746 PMCID: PMC6123505 DOI: 10.5371/hp.2018.30.3.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedic Surgery, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
19
|
Integration of Genome-Wide DNA Methylation and Transcription Uncovered Aberrant Methylation-Regulated Genes and Pathways in the Peripheral Blood Mononuclear Cells of Systemic Sclerosis. Int J Rheumatol 2018; 2018:7342472. [PMID: 30245726 PMCID: PMC6139224 DOI: 10.1155/2018/7342472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective. Systemic sclerosis (SSc) is a systemic connective tissue disease of unknown etiology. Aberrant gene expression and epigenetic modifications in circulating immune cells have been implicated in the pathogenesis of SSc. This study is to delineate the interaction network between gene transcription and DNA methylation in PBMC of SSc patients and to identify methylation-regulated genes which are involved in the pathogenesis of SSc. Methods. Genome-wide mRNA transcription and global DNA methylation analysis were performed on PBMC from 18 SSc patients and 19 matched normal controls (NC) using Illumina BeadChips. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were integrative analyzed to identify methylation-regulated genes and associated molecular pathways. Results. Transcriptome analysis distinguished 453 DEGs (269 up- and 184 downregulated) in SSc from NC. Global DNA methylation analysis identified 925 DMPs located on 618 genes. Integration of the two lists revealed only 20 DEGs which harbor inversely correlated DMPs, including 12 upregulated (ELANE, CTSG, LTBR, C3AR1, CSTA, SPI1, ODF3B, SAMD4A, PLAUR, NFE2, ZYX, and CTSZ) and eight downregulated genes (RUNX3, PRF1, PRKCH, PAG1, RASSF5, FYN, CXCR6, and F2R). These potential methylation-regulated DEGs (MeDEGs) are enriched in the pathways related to immune cell migration, proliferation, activation, and inflammation activities. Using a machine learning algorism, we identified six out of the 20 MeDEGs, including F2R, CXCR6, FYN, LTBR, CTSG, and ELANE, which distinguished SSc from NC with 100% accuracy. Four genes (F2R, FYN, PAG1, and PRKCH) differentially expressed in SSc with interstitial lung disease (ILD) compared to SSc without ILD. Conclusion. The identified MeDEGs may represent novel candidate factors which lead to the abnormal activation of immune regulatory pathways in the pathogenesis of SSc. They may also be used as diagnostic biomarkers for SSc and clinical complications.
Collapse
|
20
|
FAK and BMP-9 synergistically trigger osteogenic differentiation and bone formation of adipose derived stem cells through enhancing Wnt-β-catenin signaling. Biomed Pharmacother 2018; 105:753-757. [DOI: 10.1016/j.biopha.2018.04.185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
|
21
|
Yang H, Hong N, Liu H, Wang J, Li Y, Wu S. Differentiated adipose-derived stem cell cocultures for bone regeneration in RADA16-I in vitro. J Cell Physiol 2018; 233:9458-9472. [PMID: 29995982 DOI: 10.1002/jcp.26838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Craniofacial defects can cause morbidness. Adipose-derived stem cells (ADSCs) have shown great promise for osteogeneration and vascularization; therefore cocultures of differentiated ADSCs are explored to increase bone and vessel formation. In this study, ADSCs were induced into osteogenic ADSCs (os-ADSCs) and endothelial ADSCs (endo-ADSCs) cells, which were then cocultured in variable proportions (os-ADSCs/endo-ADSCs = 2:1, 1:1, 1:2). The os-ADSCs in a ratio of 1:1 expressed more ALP, RUNX2 and COL-I, whereas VEGF, vWF and CD31 were upregulated in the endo-ADSCs of this group. Next generation RNA sequencing (RNA-seq) was performed to evaluate the molecular mechanisms of cocultured ADSCs. The os-ADSCs and endo-ADSCs interacted with each other during osteogenic and angiogenic differentiation, especially at the ratio of 1:1, and were regulated by vascular-related genes, cell-mediated genes, bone-related genes and the transforming growth factor β signaling pathway (TGF-β), mitogen-activated protein kinase signaling pathway (MAPK) and wnt signaling pathway (Wnt). Angptl4, apoe, mmp3, bmp6, mmp13 and fgf18 were detected to be up-regulated, and cxcl12 and wnt5a were down-regulated. The results showed that the gene expression levels were consistent with that in RNA-seq. The cells were then seeded into self-assembling peptide RADA16-I scaffolds as cocultures (1:1) and monocultures (ADSCs, os-ADSCs, endo-ADSCs). The results showed that the cells of all groups grew and proliferated well on the scaffolds, and the cocultured group exhibited better osteogeneration and vascularization. In conclusion, cocultured os-ADSCs and endo-ADSCs at the ratio of 1:1 showed strong osteogenic and angiogenic differentiation. There is a great potential for osteogenesis and vascularization by 3D culturing cells in a 1:1 ratio in self-assembling peptide RADA16-I scaffolds, which requires evaluation for bone regeneration in vivo.
Collapse
Affiliation(s)
- Huifang Yang
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Nanrui Hong
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Hsiaowei Liu
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jieda Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuyi Wu
- Department of Prosthodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Hu H, Li Z, Lu M, Yun X, Li W, Liu C, Guo A. Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin β1 and activate ERK pathway. Biomed Pharmacother 2018; 105:66-72. [PMID: 29843046 DOI: 10.1016/j.biopha.2018.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS Dexamethasone (Dex) is widely used in autoimmune diseases and inflammation treatment. A sever side effect of prolonged exposure to Dex is increased risk of osteoporosis (OP) or even femoral head necrosis, which would cause much suffer to patients. To reveal the mechanism behind this phenomenon, provide therapeutic guidance and potential target, we analyzed the inhibitory mechanism of Dex on osteogenesis of rat-BMSC. METHODS Rat BMSC were obtained and characterized with FACS analysis. Osteogenesis and adipogenesis abilities were detected with Oil-O-Red staining, Alizarin Red staining and ALP activity analysis. These BMSC were then treated with Dex in combination with recombinant OA or not and detected for osteogenesis related gene expression with qRT-PCR. Protein interaction and expression were detected by Co-Immunoprecipitation and western blot. RESULTS Osteoactivin (OA) could promote integrin β 1 expression and interact with this protein physically, leading to ERK activation and promoting osteogenesis related genes' expression including Runx2, Col1a and OCN in BMSC. Dex, however, could block expression of several upstream genes of OA and decrease OA mRNA and protein level, and eventually suppress integrin β1-ERK activation and lead to decreased osteogenesis, which could finally develop into OP. CONCLUSION Recombinant OA treated BMSC exerted better osteogenesis potency even with Dex administration. This is because additional OA in medium counter-acts with Dex's influence and rescued osteoblast differentiation via up-regulating integrin β1 and activate ERK/MAPK pathway which promotes osteogenesis. Hence, OA/integrin β1 could serve as potential therapeutic target for OP.
Collapse
Affiliation(s)
- He Hu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China; Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, PR China
| | - Zhehai Li
- Department of Orthopedics, Beijing Northern Hospital, China North Industries, Beijing, 100089, PR China; Inner Mongolia Medical University, Hohhot, 014010, Inner Mongolia, PR China
| | - Min Lu
- Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, PR China
| | - Xinyi Yun
- Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, 014010, Inner Mongolia, PR China
| | - Wei Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, PR China
| | - Caiyun Liu
- Hunan Youcheng Biotechnology Co. Ltd, Changsha, 410000, PR China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China.
| |
Collapse
|