1
|
Li S, Li C, Khan MI, Liu J, Shi Z, Gao D, Qiu B, Ding W. Microneedle array facilitates hepatic sinusoid construction in a large-scale liver-acinus-chip microsystem. MICROSYSTEMS & NANOENGINEERING 2023; 9:75. [PMID: 37303831 PMCID: PMC10247758 DOI: 10.1038/s41378-023-00544-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 06/13/2023]
Abstract
Hepatic sinusoids play a key role in maintaining high activities of liver cells in the hepatic acinus. However, the construction of hepatic sinusoids has always been a challenge for liver chips, especially for large-scale liver microsystems. Herein, we report an approach for the construction of hepatic sinusoids. In this approach, hepatic sinusoids are formed by demolding a self-developed microneedle array from a photocurable cell-loaded matrix in a large-scale liver-acinus-chip microsystem with a designed dual blood supply. Primary sinusoids formed by demolded microneedles and spontaneously self-organized secondary sinusoids can be clearly observed. Benefiting from significantly enhanced interstitial flows by formed hepatic sinusoids, cell viability is witnessed to be considerably high, liver microstructure formation occurs, and hepatocyte metabolism is enhanced. In addition, this study preliminarily demonstrates the effects of the resulting oxygen and glucose gradients on hepatocyte functions and the application of the chip in drug testing. This work paves the way for the biofabrication of fully functionalized large-scale liver bioreactors.
Collapse
Affiliation(s)
- Shibo Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Muhammad Imran Khan
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230601 China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| |
Collapse
|
2
|
Liu J, Feng C, Zhang M, Song F, Liu H. Design and Fabrication of a Liver-on-a-chip Reconstructing Tissue-tissue Interfaces. Front Oncol 2022; 12:959299. [PMID: 35992870 PMCID: PMC9389071 DOI: 10.3389/fonc.2022.959299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the rapid advances in the liver-on-a-chip platforms, it remains a daunting challenge to construct a biomimetic liver-on-a-chip for in vitro research. This study aimed to reconstruct the tissue-tissue interfaces based on bilayer microspheres and form vascularized liver tissue. Firstly, we designed a tri-vascular liver-on-a-chip (TVLOC) comprising a hepatic artery, a portal vein and a central vein, and theoretically analyzed the distribution of velocity and concentration fields in the culture area. Secondly, we designed a bilayer microsphere generating microsystem based on the coaxial confocal principle, which is primarily used to produce bilayer microspheres containing different kinds of cells. Finally, the bilayer microspheres were co-cultured with endothelial cells in the cell culture area of the TVLOC to form vascularized liver tissue, and the cell viability and vascular network growth were analyzed. The results revealed that the TVLOC designed in this study can provide a substance concentration gradient similar to that of the liver microenvironment, and the bilayer microspheres can form a three-dimensional (3D) orderly liver structure with endothelial cells. Such a liver-on-a-chip is capable of maintaining the function of hepatocytes (HCs) pretty well. This work provides full insights into further simulation of the liver-on-a-chip.
Collapse
Affiliation(s)
- Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chong Feng
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- *Correspondence: Haochen Liu, ; Feng Song,
| | - Haochen Liu
- Department of Cardiovascular Surgery, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Haochen Liu, ; Feng Song,
| |
Collapse
|
3
|
Liu J, Zhou Z, Zhang M, Song F, Feng C, Liu H. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered 2022; 13:10087-10097. [PMID: 35412953 PMCID: PMC9161989 DOI: 10.1080/21655979.2022.2063651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Artificial skins have been used as skin substitutes for wound healing in the clinic, and as in vitro models for safety assessment in cosmetic and pharmaceutical industries. The three-dimensional (3D) bioprinting technique provides a promising strategy in the fabrication of artificial skins. Despite the technological advances, many challenges remain to be conquered, such as the complicated preparation conditions for bio-printed skin and the unavailability of stability and robustness of skin bioprinting. Here, we formulated a novel bio-ink composed of gelatin, sodium alginate and fibrinogen. By optimizing the ratio of components in the bio-ink, the design of the 3D model and the printing conditions, a fibroblasts-containing dermal layer construct was firstly fabricated, on the top of which laminin and keratinocytes were sequentially placed. Through air-liquid interface (ALI) culture by virtue of sterile wire mesh, a full-thickness skin tissue was thus prepared. HE and immunofluorescence staining showed that the bio-printed skin was not only morphologically representative of the human skin, but also expressed the specific markers related to epidermal differentiation and stratum corneum formation. The presented easy and robust preparation of full-thickness skin constructs provides a powerful tool for the establishment of artificial skins, holding critical academic significance and application value.
Collapse
Affiliation(s)
- Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Zhengtong Zhou
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Chong Feng
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Haochen Liu
- Department of Cardiovascular Surgery, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
4
|
Meng D, Lei X, Li Y, Kong Y, Huang D, Zhang G. Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture. J Biomater Appl 2020; 35:459-470. [DOI: 10.1177/0885328220933505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The creation of in vitro functional hepatic tissue simulating micro environmental niche of the native liver is a keen area of research due to its demand in bioartificial liver. However, it is still unclear how to maintain benign cell function while achieving the sufficient cell quantity. In this work, we aim to prepare a novel scaffold for the culture of HepG2 cells, a liver cell line, by modifying polyvinyl alcohol (PVA) scaffold with collagen (COL). PVA is a kind of synthetic biostable polymer with high hydrophilicity in the human body, has been widely used in the biomedical field. However, the use of PVA is limited in cell cultures due to lack of biologically active functional groups. In this study, amino silane (KH-550), glutaraldehyde and native type I collagen were used to modify three-dimensional PVA scaffold to establish a suitable composite scaffold for hepatocyte culture. Three types of composite scaffolds were prepared for different collagen content, named as PVA/COL (0.2%), PVA/COL (0.5%) and PVA/COL (0.8%), respectively. The composite scaffolds were characterized by SEM, XPS, FTIR, MS, porosity estimation and water contact angle measurement. The PVA/COL (0.8%) scaffolds had the highest collagen content of 12.13%. The composite scaffold showed high porosity with interconnected pores. Furthermore, the biocompatibility between HepG2 cells and scaffolds was evaluated by the ability of cell proliferation, albumin secretion, as well as urea synthesis. The coating of collagen on PVA scaffolds promoted hydrophilicity and HepG2 cell adhesion. Additionally, enhanced cell proliferation, increased albumin secretion and urea synthesis were observed in HepG2 cells growing on collagen-coated three-dimensional PVA scaffolds.
Collapse
Affiliation(s)
- Di Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiongxin Lei
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| | - Yang Li
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjun Kong
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guifeng Zhang
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| |
Collapse
|
5
|
Liver Bioreactor Design Issues of Fluid Flow and Zonation, Fibrosis, and Mechanics: A Computational Perspective. J Funct Biomater 2020; 11:jfb11010013. [PMID: 32121053 PMCID: PMC7151609 DOI: 10.3390/jfb11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering, with the goal of repairing or replacing damaged tissue and organs, has continued to make dramatic science-based advances since its origins in the late 1980’s and early 1990’s. Such advances are always multi-disciplinary in nature, from basic biology and chemistry through physics and mathematics to various engineering and computer fields. This review will focus its attention on two topics critical for tissue engineering liver development: (a) fluid flow, zonation, and drug screening, and (b) biomechanics, tissue stiffness, and fibrosis, all within the context of 3D structures. First, a general overview of various bioreactor designs developed to investigate fluid transport and tissue biomechanics is given. This includes a mention of computational fluid dynamic methods used to optimize and validate these designs. Thereafter, the perspective provided by computer simulations of flow, reactive transport, and biomechanics responses at the scale of the liver lobule and liver tissue is outlined, in addition to how bioreactor-measured properties can be utilized in these models. Here, the fundamental issues of tortuosity and upscaling are highlighted, as well as the role of disease and fibrosis in these issues. Some idealized simulations of the effects of fibrosis on lobule drug transport and mechanics responses are provided to further illustrate these concepts. This review concludes with an outline of some practical applications of tissue engineering advances and how efficient computational upscaling techniques, such as dual continuum modeling, might be used to quantify the transition of bioreactor results to the full liver scale.
Collapse
|