1
|
Czyż Ł, Tekieli Ł, Miszalski-Jamka T, Banyś RP, Szot W, Mazur W, Chmiel J, Mazurek A, Skubera M, Dąbrowski W, Jarocha D, Podolec P, Majka M, Musiałek P. Infarct size and long-term left ventricular remodelling in acute myocardial infarction patients subjected to transcoronary delivery of progenitor cells. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:465-471. [PMID: 36967855 PMCID: PMC10031670 DOI: 10.5114/aic.2023.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 02/18/2023] Open
Abstract
Introduction Infarct size (IS) is a fundamental determinant of left-ventricular (LV) remodelling (end-systolic and end-diastolic volume change, ΔESV, ΔEDV) and adverse clinical outcomes after myocardial infarction (MI). Our prior work found that myocardial uptake of transcoronary-delivered progenitor cells is governed by IS. Aim To evaluate the relationship between IS, stem cell uptake, and the magnitude of LV remodelling in patients receiving transcoronary administration of progenitor cells shortly after MI. Material and methods Thirty-one subjects (age 36-69 years) with primary percutaneous coronary intervention (pPCI)-treated anterior ST-elevation MI (peak CK-MB 584 [181-962] U/l, median [range]) and sustained left ventricle ejection fraction (LVEF) ≤ 45% were studied. On day 10 (median) 4.3 × 106 (median) autologous CD34+ cells (50% labelled with 99mTc-extametazime) were administered via the infarct-related artery (left anterior descending). ΔESV, ΔEDV, and mid circumferential myocardial strain (mCS) were evaluated at 24 months. Results Infarct mass (cMRI) was 57 [11-112] g. Cell label myocardial uptake (whole-body γ-scans) was proportional to IS (r = 0.62), with a median 2.9% uptake in IS 1st tercile (≤ 45 g), 5.2% in 2nd (46-76 g), and 6.7% in 3rd (> 76 g) (p = 0.0006). Cell uptake in proportion to IS attenuated the IS-ΔESV (p = 0.41) and IS-ΔEDV (p = 0.09) relationship. At 24 months, mCS improved in IS 2nd tercile (p = 0.028) while it showed no significant change in smaller (p = 0.87) or larger infarcts (p = 0.58). Conclusions This largest human study with labelled CD34+ cell transplantation shortly after MI suggests that cell uptake (proportional to IS) may attenuate the effect of IS on LV adverse remodelling. To boost this effect, further strategies should involve cell types and delivery techniques to maximize myocardial uptake.
Collapse
Affiliation(s)
- Łukasz Czyż
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Łukasz Tekieli
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | | | - R. Paweł Banyś
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Wojciech Szot
- Nuclear Imaging Laboratory, John Paul II Hospital, Krakow, Poland
| | - Wojciech Mazur
- Division of Cardiology, The Christ Hospital Health Network, Cincinnati, United States of America
| | - Jakub Chmiel
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Adam Mazurek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Maciej Skubera
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Władysław Dąbrowski
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Danuta Jarocha
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
2
|
Assessment of Myocardial Diastolic Dysfunction as a Result of Myocardial Infarction and Extracellular Matrix Regulation Disorders in the Context of Mesenchymal Stem Cell Therapy. J Clin Med 2022; 11:jcm11185430. [PMID: 36143077 PMCID: PMC9502668 DOI: 10.3390/jcm11185430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The decline in cardiac contractility due to damage or loss of cardiomyocytes is intensified by changes in the extracellular matrix leading to heart remodeling. An excessive matrix response in the ischemic cardiomyopathy may contribute to the elevated fibrotic compartment and diastolic dysfunction. Fibroproliferation is a defense response aimed at quickly closing the damaged area and maintaining tissue integrity. Balance in this process is of paramount importance, as the reduced post-infarction response causes scar thinning and more pronounced left ventricular remodeling, while excessive fibrosis leads to impairment of heart function. Under normal conditions, migration of progenitor cells to the lesion site occurs. These cells have the potential to differentiate into myocytes in vitro, but the changed micro-environment in the heart after infarction does not allow such differentiation. Stem cell transplantation affects the extracellular matrix remodeling and thus may facilitate the improvement of left ventricular function. Studies show that mesenchymal stem cell therapy after infarct reduces fibrosis. However, the authors did not specify whether they meant the reduction of scarring as a result of regeneration or changes in the matrix. Research is also necessary to rule out long-term negative effects of post-acute infarct stem cell therapy.
Collapse
|
3
|
van Klarenbosch BR, Chamuleau SA, Teske AJ. Deformation imaging to assess global and regional effects of cardiac regenerative therapy in ischaemic heart disease: A systematic review. J Tissue Eng Regen Med 2019; 13:1872-1882. [PMID: 31314949 PMCID: PMC6852417 DOI: 10.1002/term.2937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 01/19/2023]
Abstract
Currently, left ventricular ejection fraction (LVEF) is the most common endpoint in cardiovascular stem cell therapy research. However, this global measure of cardiac function might not be suitable to detect the regional effects sorted by this therapy and is hampered by high operator variability and loading dependency. Deformation imaging might be more accurate in detecting potential regional functional improvements by cardiac regenerative therapy. The aim of this systematic review is to provide a comprehensive overview of current literature on the value of deformation imaging in cardiac regenerative therapy. A systematic review of current literature available on PubMed, Embase, and Cochrane databases was performed regarding both animal and patient studies in which deformation imaging was used to study cardiac cell therapy. After critical appraisal, outcomes regarding study design, type of cell therapy, procedural characteristics, outcome measure, method for measuring strain, and efficacy on both LVEF and deformation parameters were depicted. A total of 30 studies, 15 preclinical and 15 clinical, were included for analysis. Deformation outcomes improved significantly in 14 out of 15 preclinical studies and in 10 out of 15 clinical studies, whereas LVEF improved in 12 and 4 articles, respectively. Study designs and used deformation outcomes varied significantly among the included papers. Six studies found a positive effect on deformation outcomes without LVEF improvement. Hence, deformation imaging seems at least equal, and perhaps superior, to LVEF measurement in the assessment of cardiac regenerative therapy. However, strategies varied substantially and call for a standardized approach.
Collapse
Affiliation(s)
| | | | - Arco J. Teske
- Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|