1
|
Chen W, Chen M, Chen S, Wang S, Huang Z, Zhang L, Wu J, Peng W, Li H, Wen F. Decellularization of fish tissues for tissue engineering and regenerative medicine applications. Regen Biomater 2024; 12:rbae138. [PMID: 39776859 PMCID: PMC11703550 DOI: 10.1093/rb/rbae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates in situ neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications. Recently, there has been a growing interest in the decellularization of fish tissues because of the abundance of sources, less religious constraints and risks of zoonosis transmission between mammals. In this review, we provide a complete overview of the state-of-the-art decellularization of fish tissues, including the organs and methods used to prepare acellular tissues. We enumerated common decellularized fish tissues from various fish organs, such as skin, scale, bladder, cartilage, heart and brain, and elaborated their different processing methods and tissue engineering applications. Furthermore, we presented the perspectives of (i) the future development direction of fish tissue decellularization technology, (ii) expanding the sources of decellularized tissue and (iii) innovating decellularized tissue bio-inks for 3D bioprinting to unleash the great potential of decellularized tissue in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenhui Chen
- Yuhuan People’s Hospital, Taizhou, Zhejiang 317600, China
| | - Mengshi Chen
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Siyi Chen
- Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China
| | - Siran Wang
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zijin Huang
- Yuhuan People’s Hospital, Taizhou, Zhejiang 317600, China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang 325005, China
| | - Jiaming Wu
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Feng Wen
- Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Zhao C, Feng M, Gluchman M, Ma X, Li J, Wang H. Acellular fish skin grafts in the treatment of diabetic wounds: Advantages and clinical translation. J Diabetes 2024; 16:e13554. [PMID: 38664883 PMCID: PMC11045921 DOI: 10.1111/1753-0407.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024] Open
Abstract
Diabetic wounds cannot undergo normal wound healing due to changes in the concentration of hyperglycemia in the body and soon evolve into chronic wounds causing amputation or even death of patients. Diabetic wounds directly affect the quality of patients and social medical management; thus researchers started to focus on skin transplantation technology. The acellular fish skin grafts (AFSGs) are derived from wild fish, which avoids the influence of human immune function and the spread of the virus through low-cost decellularization. AFSGs contain a large amount of collagen and omega-3 polyunsaturated fatty acids and they have an amazing effect on wound regeneration. However, after our search in major databases, we found that there were few research trials in this field, and only one was clinically approved. Therefore, we summarized the advantages of AFSGs and listed the problems faced in clinical use. The purpose of this paper is to enable researchers to better carry out original experiments at various stages.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Ion Channel Pharmacology, School of PharmacyChina Medical UniversityShenyangChina
- Department of China Medical University‐The Queen's University of Belfast Joint College, School of PharmacyChina Medical UniversityShenyangChina
- School of PharmacyQueen's University BelfastBelfastUK
| | - Mengyi Feng
- School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Martin Gluchman
- Department of China Medical University‐The Queen's University of Belfast Joint College, School of PharmacyChina Medical UniversityShenyangChina
- School of PharmacyQueen's University BelfastBelfastUK
| | - Xianghe Ma
- Department of China Medical University‐The Queen's University of Belfast Joint College, School of PharmacyChina Medical UniversityShenyangChina
- School of PharmacyQueen's University BelfastBelfastUK
| | - Jinhao Li
- Department of Ion Channel Pharmacology, School of PharmacyChina Medical UniversityShenyangChina
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of PharmacyChina Medical UniversityShenyangChina
| |
Collapse
|
3
|
Bentarhlia N, Kartah BE, Fadil M, El Harkaoui S, Matthäus B, Abboussi O, Abdelmoumen H, Bouhnik O, El Monfalouti H. Exploring the wound-healing and antimicrobial potential of Dittrichia viscosa L lipidic extract: Chemical composition and in vivo evaluation. Fitoterapia 2024; 172:105707. [PMID: 37866421 DOI: 10.1016/j.fitote.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Dittrichia viscosa belongs to the Dittrichia genus, it grows abundantly in the east and northeast of Morocco, and traditionally its fresh leaves are crushed and given for topical application after burns, wounds, and infections. In this study, we examine the wound-healing activity of Dittrichia viscosa lipidic extract in vivo, assess its anti-microbial effect, and explore the specific compounds that contribute to these effects. To assess the effectiveness of wound healing, a burn-induced wound model was employed in Wistar rats, and the levels of hydroxyproline as well as histopathological changes in the skin tissues were evaluated. Furthermore, the antimicrobial potential against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida glabrata, and Malassezia furfur was investigated using the agar disc diffusion method. Gas Chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques were employed to analyze the composition of fatty acids, phytosterols, and tocopherols. Topical application of Dittrichia viscosa lipidic fraction ointment exhibited significant improvements in wound contraction, achieving an impressive rate of 82% within 21 days. Additionally, the lipidic extract of Dittrichia viscosa displayed notable efficacy against various microbial strains, including Candida albicans (25.07 ± 0.2), Candida glabrata (24 ± 0.6), and Malassezia furfur (22 ± 0.7). The primary fatty acids identified in the sample were linolenic acid (58.95% ± 0), oleic acid (16.75% ±0.04), and linoleic acid (11.97% ± 0.1). Notably, the sample contained significant amounts of γ-Tocopherols (732.08 ± 21mg/kg), while the sterol fraction primarily consisted of 7-Campesterol (1937 ± 0 mg/kg), 7-β-Sitosterol (1621 ± 0 mg/kg), and Stigmasterol (1439 ± 26 mg/kg). By its richness in active compound content, Dittrichia viscosa effectively accelerates wound healing while safeguarding against microbial infections.
Collapse
Affiliation(s)
- Noura Bentarhlia
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - Badr Eddine Kartah
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - Mouhcine Fadil
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University in Fez, BP 2626, Fes, 30000, Morocco
| | - Said El Harkaoui
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department for Safety and Quality of Cereals, Working Group for Lipid Research, Schützenberg 12, 32756 Detmold, Germany
| | - Bertrand Matthäus
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department for Safety and Quality of Cereals, Working Group for Lipid Research, Schützenberg 12, 32756 Detmold, Germany
| | - Oualid Abboussi
- Team of Physiology and Physiopathology, Research Center in Genomic of Human Pathologies, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - Hanaa Abdelmoumen
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - Omar Bouhnik
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco
| | - Hanae El Monfalouti
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., RP 1014, Morocco.
| |
Collapse
|
4
|
Reda F, Kjartansson H, Jeffery SLA. Use of Fish Skin Graft in Management of Combat Injuries Following Military Drone Assaults in Field-Like Hospital Conditions. Mil Med 2023; 188:e3377-e3381. [PMID: 36794813 PMCID: PMC10629988 DOI: 10.1093/milmed/usad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION The 2020 Nagorno-Karabakh war was an armed conflict between Azerbaijan and Armenia over an ethnically and historically significant region. This manuscript is a report on the forward deployment of acellular fish skin graft (FSG) from Kerecis™, a biologic, acellular matrix derived from the skin of wild-caught Atlantic cod that contains intact epidermis and dermis layers. The usual intention of treatment under adverse circumstances is to temporize wounds until better treatment can be attained, although ideally, rapid coverage and treatment are necessary to prevent long-term complications and loss of life and limb. An austere environment, such as the one experienced during the conflict described here, presents considerable logistical barriers for the treatment of wounded soldiers. MATERIALS AND METHODS Dr H. Kjartansson from Iceland and Dr S. Jeffery from the United Kingdom traveled to Yerevan, near the heart of the conflict, to deliver and train on using FSG in wound management. The primary goal was to use FSG in patients where stabilization and improvement in the wound bed were needed before skin grafting. Other goals were to improve healing time, achieve earlier skin grafting, and have better cosmetic outcomes upon healing. RESULTS Over the course of two trips, several patients were managed with fish skin. Injuries included large-area full-thickness burn and blast injuries. Management with FSG induced wound granulation several days sooner in all cases, and even weeks in some instances, allowing a stepdown in the reconstruction ladder with earlier skin grafting procedures and a reduction in requirement of flap surgery. CONCLUSIONS This manuscript describes a successful first instance of forward deployment of FSGs to an austere environment. FSG, in this military context, has shown great portability, with easy transfer of knowledge. More importantly, management with fish skin has shown faster granulation rates in burn wounds for skin grafting, resulting in improved patient outcomes with no documented infections.
Collapse
Affiliation(s)
- Fouad Reda
- Ajapnyak Medical Center, Yerevan 0038, Armenia
| | - Hilmar Kjartansson
- Kerecis LLC, Staff Specialist Landspitali University Hospital Reykjavik Iceland, Reykjavic, Iceland
| | | |
Collapse
|
5
|
Di Mitri M, Di Carmine A, Thomas E, Iacobacci G, Collautti E, D’Antonio S, Libri M, Gargano T, Lima M. Fish Skin Graft: Narrative Review and First Application for Abdominal Wall Dehiscence in Children. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5244. [PMID: 37718992 PMCID: PMC10501472 DOI: 10.1097/gox.0000000000005244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023]
Abstract
Acellular fish skin grafts (FSGs) are tissue-based products created by minimally processing the skin of the Atlantic cod (Gadus morhua). The FSG is rich in omega-3 and facilitates tissue regeneration by supporting revascularization and ingrowth in the proliferation and remodeling phases of wound healing. FSG is structurally more similar to human skin than antiviral-processed skin substitutes such as amniotic membrane, and there are no known prion, bacterial, or viral diseases that can be transmitted from North-Atlantic cod to humans. The FSG is processed using a proprietary method that preserves the structure and lipid composition of the skin. FSG is CE marked, and US Food and Drug Administration cleared for multiple clinical applications in partial and full-thickness wounds. FSG is currently the only acellular dermal matrix product that does not originate from mammalian tissues. For this narrative review, Medline and UpToDate were used to include a total of 21 articles published from 2015 to 2022 about fish skin graft use. We also reported a case of a 7-year-old boy who underwent treatment with FSG for abdominal wall dehiscence at our department of pediatric surgery, IRCCS Sant'Orsola-Malpighi, Alma Mater Studiorum, University of Bologna, University Hospital of Bologna. FSG provides a valuable and sustainable treatment that improves wound healing in both adult and pediatric populations. We described the first application of an FSG for wound dehiscence of the abdominal wall in a pediatric patient, reporting how FSG was completely reabsorbed and improved the skin's repair.
Collapse
Affiliation(s)
- Marco Di Mitri
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Di Carmine
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eduje Thomas
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Iacobacci
- Sviluppo Professionale e Implementazione della Ricerca nelle Professioni Sanitarie, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Collautti
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone D’Antonio
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Libri
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Gargano
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mario Lima
- From Pediatric Surgery Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Rodrigues CV, Sousa RO, Carvalho AC, Alves AL, Marques CF, Cerqueira MT, Reis RL, Silva TH. Potential of Atlantic Codfish ( Gadus morhua) Skin Collagen for Skincare Biomaterials. Molecules 2023; 28:molecules28083394. [PMID: 37110628 PMCID: PMC10146550 DOI: 10.3390/molecules28083394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Collagen is the major structural protein in extracellular matrix present in connective tissues, including skin, being considered a promising material for skin regeneration. Marine organisms have been attracting interest amongst the industry as an alternative collagen source. In the present work, Atlantic codfish skin collagen was analyzed, to evaluate its potential for skincare. The collagen was extracted from two different skin batches (food industry by-product) using acetic acid (ASColl), confirming the method reproducibility since no significant yield differences were observed. The extracts characterization confirmed a profile compatible with type I collagen, without significant differences between batches or with bovine skin collagen (a reference material in biomedicine). Thermal analyses suggested ASColl's native structure loss at 25 °C, and an inferior thermal stability to bovine skin collagen. No cytotoxicity was found for ASColl up to 10 mg/mL in keratinocytes (HaCaT cells). ASColl was used to develop membranes, which revealed smooth surfaces without significative morphological or biodegradability differences between batches. Their water absorption capacity and water contact angle indicated a hydrophilic feature. The metabolic activity and proliferation of HaCaT were improved by the membranes. Hence, ASColl membranes exhibited attractive characteristics to be applied in the biomedical and cosmeceutical field envisaging skincare.
Collapse
Affiliation(s)
- Cristina V Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C Carvalho
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana L Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Hill DM, Hickerson WL, Carter JE. A Risk-Benefit Review of Currently Used Dermal Substitutes for Burn Wounds. J Burn Care Res 2023; 44:S26-S32. [PMID: 36567472 DOI: 10.1093/jbcr/irac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While split-thickness autologous skin grafts remain the most common method of definitive burn wound closure, dermal substitutes have emerged as an attractive option. There are many advantages of utilizing a dermal substitute, notably reducing the need for donor tissue and subsequent iatrogenic creation of a secondary wound. However, there are disadvantages with each that most be weighed and factored into the decision. And most come at a high initial financial cost. There is little comparative literature of the various available and emerging products. This analysis was performed to objectively present risks and benefits of each option.
Collapse
Affiliation(s)
- David M Hill
- Department of Pharmacy, Regional One Health, 877 Jefferson Avenue, Memphis, Tennessee 38103, USA
| | | | - Jeffrey E Carter
- Louisiana State University Health Sciences Center, 2000 Canal Street, New Orleans, Louisiana 70112, USA
| |
Collapse
|
8
|
Lv Y, Xu Y, Sang X, Li C, Liu Y, Guo Q, Ramakrishna S, Wang C, Hu P, Nanda HS. PLLA-gelatin composite fiber membranes incorporated with functionalized CeNPs as a sustainable wound dressing substitute promoting skin regeneration and scar remodelling. J Mater Chem B 2022; 10:1116-1127. [DOI: 10.1039/d1tb02677a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need of wound dressing material that can accelerate wound healing is increasing and will last a long time. In this study, Cerium Oxide Nanoparticles (CeNPs) incorporated poly-L-lactic acid (PLLA)-gelatin...
Collapse
|
9
|
Kotronoulas A, de Lomana ALG, Karvelsson ST, Heijink M, Stone Ii R, Giera M, Rolfsson O. Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment. Prostaglandins Leukot Essent Fatty Acids 2021; 175:102358. [PMID: 34753002 DOI: 10.1016/j.plefa.2021.102358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022]
Abstract
The use of acellular fish skin grafts (FSG) for the treatment of burn wounds is becoming more common due to its beneficial wound healing properties. In our previous study we demonstarted that FSG is a scaffold biomaterial that is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) conjugated to phosphatidylcholines. Here we investigated whether EPA and DHA derived lipid mediators are influenced during the healing of burn wounds treated with FSG. Deep partial and full thickness burn wounds (DPT and FT, respectively) were created on Yorkshire pigs (n = 4). DPT were treated with either FSG or fetal bovine dermis while FT were treated either with FSG or cadaver skin initially and followed by a split thickness skin graft. Punch biopsies were collected on days 7, 14, 21, 28 and 60 and analyzed in respect of changes to approximately 45 derivatives of EPA, DHA, arachidonic acid (AA), and linoleic acid (LA) employing UPLC-MS/MS methodology. Nine EPA and DHA lipid mediators, principally mono-hydroxylated derivatives such as 18-HEPE and 17-HDHA, were significantly higher on day 7 in the DPT when treated with FSG. A similar but non-significant trend was observed for the FT. The results suggest that the use of FSG in burn wound treatment can alter the formation of EPA and DHA mono hydroxylated lipid mediators in comparison to other grafts of mammalian origin. The differences observed during the first seven days after treatment indicates that FSG affects the early stages of wound healing.
Collapse
Affiliation(s)
| | | | | | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), the Netherlands
| | - Randolph Stone Ii
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), the Netherlands
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
10
|
Karvelsson ST, Sigurdsson A, Seip K, Grinde MT, Wang Q, Johannsson F, Mælandsmo GM, Moestue SA, Rolfsson O, Halldorsson S. EMT-Derived Alterations in Glutamine Metabolism Sensitize Mesenchymal Breast Cells to mTOR Inhibition. Mol Cancer Res 2021; 19:1546-1558. [PMID: 34088869 DOI: 10.1158/1541-7786.mcr-20-0962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.
Collapse
Affiliation(s)
| | - Arnar Sigurdsson
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Kotryna Seip
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Qiong Wang
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Freyr Johannsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Siver Andreas Moestue
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.,Department of Pharmacy, Nord University, Namsos, Norway
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.
| | - Skarphedinn Halldorsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Institute for Surgical Research, Vilhelm Magnus Laboratory, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Teitsdottir UD, Halldorsson S, Rolfsson O, Lund SH, Jonsdottir MK, Snaedal J, Petersen PH. Cerebrospinal Fluid C18 Ceramide Associates with Markers of Alzheimer's Disease and Inflammation at the Pre- and Early Stages of Dementia. J Alzheimers Dis 2021; 81:231-244. [PMID: 33814423 PMCID: PMC8203241 DOI: 10.3233/jad-200964] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Understanding how dysregulation in lipid metabolism relates to the severity of Alzheimer‘s disease (AD) pathology might be critical in developing effective treatments. Objective: To identify lipid species in cerebrospinal fluid (CSF) associated with signature AD pathology and to explore their relationships with measures reflecting AD-related processes (neurodegeneration, inflammation, deficits in verbal episodic memory) among subjects at the pre- and early symptomatic stages of dementia. Methods: A total of 60 subjects that had been referred to an Icelandic memory clinic cohort were classified as having CSF AD (n = 34) or non-AD (n = 26) pathology profiles. Untargeted CSF lipidomic analysis was performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) for the detection of mass-to-charge ratio (m/z) features. CSF proteins reflecting neurodegeneration (neurofilament light [NFL]) and inflammation (chitinase-3-like protein 1 [YKL-40], S100 calcium-binding protein B [S100B], glial fibrillary acidic protein [GFAP]) were also measured. Rey Auditory Verbal Learning (RAVLT) and Story tests were used for the assessment of verbal episodic memory. Results: Eight out of 1008 features were identified as best distinguishing between the CSF profile groups. Of those, only the annotation of the m/z feature assigned to lipid species C18 ceramide was confirmed with a high confidence. Multiple regression analyses, adjusted for age, gender, and education, demonstrated significant associations of CSF core AD markers (Aβ42: st.β= –0.36, p = 0.007; T-tau: st.β= 0.41, p = 0.005) and inflammatory marker S100B (st.β= 0.51, p = 0.001) with C18 ceramide levels. Conclusion: Higher levels of C18 ceramide associated with increased AD pathology and inflammation, suggesting its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Unnur D Teitsdottir
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | | | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | - Maria K Jonsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland.,Department of Psychiatry, Landspitali -National University Hospital, Reykjavik, Iceland
| | - Jon Snaedal
- Memory Clinic, Department of Geriatric Medicine, Landspitali - National University Hospital, Reykjavik, Iceland
| | - Petur H Petersen
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
12
|
Huang C, Ogawa R. Systemic factors that shape cutaneous pathological scarring. FASEB J 2020; 34:13171-13184. [DOI: 10.1096/fj.202001157r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenyu Huang
- Department of Dermatology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery Nippon Medical School Tokyo Japan
| |
Collapse
|