1
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2025; 113:42-60. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Meretsky CR, Polychronis A, Schiuma AT. A Comparative Analysis of the Advances in Stem Cell Therapy in Plastic Surgery: A Systematic Review of Current Applications and Future Directions. Cureus 2024; 16:e67067. [PMID: 39286681 PMCID: PMC11404395 DOI: 10.7759/cureus.67067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Stem cell (SC) therapy is revolutionizing the field of plastic surgery by harnessing the regenerative abilities of SCs derived from adipose tissue and bone marrow to boost tissue repair and enhance aesthetic outcomes. This groundbreaking method enhances results in procedures such as fat grafting, facial rejuvenation, and wound healing. As studies advance, SC therapy shows potential for more sophisticated uses in both reconstructive and cosmetic surgery. The objective of this review is to comprehensively examine the advances in SC therapy within the field of plastic surgery, highlighting its current applications and exploring future directions. The systematic review was conducted on SC therapy in plastic surgery adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and specific search criteria. This systematic review highlights these main outcomes, and SC therapy in plastic surgery enhances tissue repair and aesthetic outcomes by utilizing mesenchymal SCs such as adipose-derived SCs (ADSCs) and bone marrow-derived SCs (BMSCs), with platelet-rich plasma (PRP) providing additional support. Techniques such as scaffolds and cellular reprogramming are employed to guide SC growth, enabling tailored tissue engineering for complex regenerative procedures. This innovative approach accelerates healing, reduces scarring in reconstructive surgeries, improves skin texture, and ensures the natural integration of treated areas, ultimately yielding enhanced aesthetic results and transforming facial rejuvenation processes. SC therapy in plastic surgery holds great promise, but challenges such as protocol standardization, cost, and regulations still need to be addressed. SC therapy is leading innovative advancements in plastic surgery, offering superior outcomes and improved quality of life for patients. Interestingly, the future of plastic surgery is focused on integrating SC therapy for personalized and transformative treatments. Furthermore, interdisciplinary collaboration among bioengineers, clinicians, and regulatory bodies is essential for overcoming challenges and advancing SC research into clinical practice.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
3
|
Hazrati P, Mirtaleb MH, Boroojeni HSH, Koma AAY, Nokhbatolfoghahaei H. Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature. Curr Stem Cell Res Ther 2024; 19:473-496. [PMID: 35984017 DOI: 10.2174/1574888x17666220818103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss. OBJECTIVE This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation. RESULTS AND DISCUSSION Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation. CONCLUSION According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.
Collapse
Affiliation(s)
- Parham Hazrati
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
5
|
Mourão CF, Lowenstein A, Mello-Machado RC, Ghanaati S, Pinto N, Kawase T, Alves GG, Messora MR. Standardization of Animal Models and Techniques for Platelet-Rich Fibrin Production: A Narrative Review and Guideline. Bioengineering (Basel) 2023; 10:482. [PMID: 37106669 PMCID: PMC10135737 DOI: 10.3390/bioengineering10040482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Experimental research is critical for advancing medical knowledge and enhancing patient outcomes, including in vitro and in vivo preclinical assessments. Platelet-rich fibrin (PRF) is a blood by-product that has garnered attention in the medical and dental fields due to its potential for tissue regeneration and wound healing. Animal models, such as rabbits and rats, have been used to produce PRF and examine its properties and applications. PRF has demonstrated potential in the dental and medical fields for reducing inflammation, promoting tissue repair, and accelerating wound healing. This narrative review aims to compare existing evidence and provide guidelines for PRF animal research, emphasizing the importance of standardizing animal models, following ethical considerations, and maintaining transparency and accountability. The authors highlight the necessity to use the correct relative centrifugal force (RCF), standardize centrifugal calibration, and report detailed information about blood collection and centrifuge parameters for reproducible results. Standardizing animal models and techniques is crucial for narrowing the gap between laboratory research and clinical applications, ultimately enhancing the translation of findings from bench to bedside.
Collapse
Affiliation(s)
- Carlos Fernando Mourão
- Department of Periodontology, Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adam Lowenstein
- Department of Periodontology, Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60596 Frankfurt Am Main, Germany
| | - Nelson Pinto
- Department of Periodontics and Implant Dentistry, University of the Andes, Santiago 12455, Chile
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Gutemberg Gomes Alves
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| |
Collapse
|
6
|
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022; 14:e27946. [PMID: 36120221 PMCID: PMC9464706 DOI: 10.7759/cureus.27946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary dentin, as well as the liberation of physiologically active molecules and the control of developmental processes. Although efforts to protect dentin have mostly centered on preventing these proteases from doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated. The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of reparative and reactionary dentin, and the established functions of MMPs in dentin production are given particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as leading applicants for dentin regeneration.
Collapse
|
7
|
Wang CH, Mutalik C, Yougbaré S, Teng NC, Kuo TR. Calcium Phosphate Nanoclusters for the Repair of Tooth Enamel Erosion. NANOMATERIALS 2022; 12:nano12121997. [PMID: 35745336 PMCID: PMC9230511 DOI: 10.3390/nano12121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
The artificial repair of tooth enamel is still an urgent requirement because it has a complicated and well-arranged structure. Herein, calcium phosphate nanoclusters (CaP NCs) were synthesized, via a facile approach, for application in the repair of tooth enamel erosion. Structural and optical characterizations validated the successful preparation of spherical CaP NCs, with an average size of 2.1 ± 0.11 nm. By evaporating the ethanol and triethylamine (TEA) solvents, pure CaP was produced, which was further used to repair the tooth enamel. Simulated caries lesions were achieved via phosphoric acid etching to cause damage to enamel rods. After repair, the damaged enamel rods were directly covered with CaP. According to microhardness testing, after repair with CaP NCs, the hardness value of the tooth enamel with acid etching increased to a similar level to that of normal tooth enamel. The results of the microhardness test indicated that CaP NCs revealed great potential for repairing tooth enamel erosion. Our work demonstrates a promising potential for treating the early stage of tooth erosion with CaP NCs. Based on these findings, we believe that stable CaP NCs can be employed as a precursor for the tunable, effective repair of tooth enamel in the near future.
Collapse
Affiliation(s)
- Chia-Hsien Wang
- Division of Prosthodontic Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dental Department, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: (N.-C.T.); (T.-R.K.)
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (N.-C.T.); (T.-R.K.)
| |
Collapse
|
8
|
Furquim CP, Kumagai RY, Bustillos-Torrez W, Meza-Mauricio J, Tanaka CJ, Santana V, Retamal-Valdes B, Shibli JA. Whole Tooth Regeneration: Can Animal Studies be Translated into Clinical Application? Tissue Eng Part C Methods 2022; 28:104-112. [PMID: 35172636 DOI: 10.1089/ten.tec.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tooth loss leads to several oral problems and although a large number of treatments have been proposed to rehabilitate partially or totally edentulous patients, none of them is based on replacement of a missing tooth by a new natural whole tooth. In the field of tissue engineering, some animal models have been developed to regenerate a natural tooth in the oral cavity. This review shows the state of the art in whole tooth regeneration based on data from in vivo studies. A systematic scoping review was conducted to evaluate studies that described whole-tooth regeneration and eruption in the oral cavity. The data demonstrated that over 100 animals were used in experimental studies and all of them received implants of tooth germs constructed by bioengineering processes. Mini pigs and pigs were used in four studies followed by mice (n = 1) and dog (n = 1). Over 58 (44%) animals showed whole tooth eruption around 3.5 months after tooth germ implantation (1 to 13.5 months). Most of specimens revealed the presence of odontoblasts, dentin, dentinal tubules, dental pulp, root analogue, cementum, blood vessels, and alveolar bone. It could be concluded that in vivo whole tooth regeneration was proved to be possible, but the challenge to overcome translational barriers and test these approaches in humans still remains. Impact Statement Advances in tissue engineering have led to the development of new methods to regenerate and replace tissues and organs, including teeth. Tooth regeneration is the main goal for the replacement of tooth loss and therefore current evidence showed that tissue engineering might provide this treatment in future.
Collapse
Affiliation(s)
- Camila Pinheiro Furquim
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Rose Yakushijin Kumagai
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Willy Bustillos-Torrez
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Jonathan Meza-Mauricio
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Caio Junji Tanaka
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Veronica Santana
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Belen Retamal-Valdes
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| |
Collapse
|
9
|
Egle K, Salma I, Dubnika A. From Blood to Regenerative Tissue: How Autologous Platelet-Rich Fibrin Can Be Combined with Other Materials to Ensure Controlled Drug and Growth Factor Release. Int J Mol Sci 2021; 22:11553. [PMID: 34768984 PMCID: PMC8583771 DOI: 10.3390/ijms222111553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
The purpose of this review is to examine the latest literature on the use of autologous platelet-rich fibrin as a drug and growth factor carrier system in maxillofacial surgery. Autologous platelet-rich fibrin (PRF) is a unique system that combines properties such as biocompatibility and biodegradability, in addition to containing growth factors and peptides that provide tissue regeneration. This opens up new horizons for the use of all beneficial ingredients in the blood sample for biomedical purposes. By itself, PRF has an unstable effect on osteogenesis: therefore, advanced approaches, including the combination of PRF with materials or drugs, are of great interest in clinics. The main advantage of drug delivery systems is that by controlling drug release, high drug concentrations locally and fewer side effects within other tissue can be achieved. This is especially important in tissues with limited blood supply, such as bone tissue compared to soft tissue. The ability of PRF to degrade naturally is considered an advantage for its use as a "warehouse" of controlled drug release systems. We are focusing on this concentrate, as it is easy to use in manipulations and can be delivered directly to the surgical site. The target audience for this review are researchers and medical doctors who are involved in the development and research of PRFs further studies. Likewise, surgeons who use PRF in their work to treat patients and who advice patients to take the medicine orally.
Collapse
Affiliation(s)
- Karina Egle
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Riga Technical University, LV-1658 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
| | - Ilze Salma
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
- Institute of Stomatology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Riga Technical University, LV-1658 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
| |
Collapse
|
10
|
Nizami MZI, Nishina Y. Recent Advances in Stem Cells for Dental Tissue Engineering. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:281-324. [DOI: 10.1007/978-981-16-4420-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Regenerating the Pulp-Dentine Complex Using Autologous Platelet Concentrates: A Critical Appraisal of the Current Histological Evidence. Tissue Eng Regen Med 2020; 18:37-48. [PMID: 33150561 PMCID: PMC7862478 DOI: 10.1007/s13770-020-00291-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Autologous platelet concentrates such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) have gained overwhelming popularity in regenerative endodontics. Clinical evidence reveals the lack of a particular advantage of using PRP or PRF over an evoked blood clot in promoting canal wall thickening and/or continued root development in immature necrotic teeth. Moreover, despite stimulating tissue repair and repopulating the root canals of immature and mature permanent teeth, the new vital tissue may not possess the functional activity of the native pulp tissue. Methods: To better understand the origin, nature, and long-term fate of the tissue types found within the pulp space, we critically examine all available histo-/morphological evidence for pulp–dentine complex regeneration using PRP and/or PRF, alone or together with an evoked blood clot, specialised or unspecialised primary cells, and other biomaterials. Results: Histological data from clinical studies is scant. Reportedly, the inner dentinal surface supports cementum-like tissue formation, but this interface likely deviates in structure and function from the native cementodentinal junction. Presence of bone-like tissue within the pulp space is intriguing since de novo osteogenesis requires closely coordinated recruitment and differentiation of osteoprogenitor cells. Compared to untreated necrotic teeth, an evoked blood clot (with/without PRF) improves fracture resistance. Tooth regeneration using PRF and dental bud cells is unreliable and the constituent neoformed tissues are poorly organised. Conclusion: PRP/PRF fail to demonstrate a significant advantage over an induced blood clot, alone. The true nature of neoformed tissues remains poorly characterised while their response to subsequent insult/injury is unexplored.
Collapse
|
12
|
Jasmine S, Thangavelu A, Krishnamoorthy R, Alshatwi AA. Platelet Concentrates as Biomaterials in Tissue Engineering: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
A Comprehensive Review of Concentrated Growth Factors and Their Novel Applications in Facial Reconstructive and Regenerative Medicine. Aesthetic Plast Surg 2020; 44:1047-1057. [PMID: 31970453 DOI: 10.1007/s00266-020-01620-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Concentrated growth factors (CGFs) are the latest generation of platelet concentrates. The objective of developing CGF is to increase therapeutic efficacy. However, few studies have supported the superiority of CGF in composition and efficacy. The reconstruction and regeneration process is complicated and long term, whereas bioactivity of CGF is not durable. The purpose of this review is threefold. The first is to recommend more comparative studies between CGF and other platelet concentrates. The second is to constitute a continuous drug delivery system by combining CGF with other biomaterials. Finally, the novel use of CGF in facial regenerative and reconstructive medicine will be highlighted. METHODS A comprehensive review of literature regarding the use of CGF in facial regenerative and reconstructive medicine was performed. Based on the inclusion and exclusion criteria, a total of 135 articles were included. RESULTS The use of CGF involving facial rejuvenation, cartilage grafting, facial bone defects, facial peripheral nerve injury and wounding is reviewed. The reconstructive and regenerative principles lie in firm fibrin scaffolds and continuous in situ delivery of multiple growth factors. CONCLUSIONS CGF represents an advance in personalized medicine concept. However, the current scientific evidences about the use of CGF are limited. More basic and clinical studies should be conducted to understand the characteristics and clinical application of CGF. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
14
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
15
|
|
16
|
Grecu AF, Reclaru L, Ardelean LC, Nica O, Ciucă EM, Ciurea ME. Platelet-Rich Fibrin and its Emerging Therapeutic Benefits for Musculoskeletal Injury Treatment. ACTA ACUST UNITED AC 2019; 55:medicina55050141. [PMID: 31096718 PMCID: PMC6572609 DOI: 10.3390/medicina55050141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
New therapies that accelerate musculoskeletal tissue recovery are highly desirable. Platelet-rich fibrin (PRF) is a leukocyte- and platelet-rich fibrin biomaterial that acts as a binding site for both platelets and growth factors. Through increasing the local concentration of growth factors at specific tissues, PRF promotes tissue regeneration. PRF has been frequently used in combination with bone graft materials to reduce healing times and promote bone regeneration during maxillofacial surgery. However, its benefits during muscle repair and recovery are less well-documented. Here, we perform a narrative review on PRF therapies and muscle injuries to ascertain its beneficial effects. We reviewed the factors that contribute to the biological activity of PRF and the published pre-clinical and clinical evidence to support its emerging use in musculoskeletal therapy. We include in vitro studies, in vivo animal studies and clinical articles highlighting both the success and failures of PRF treatment. PRF can promote the healing process when used in a range of orthopaedic and sports-related injuries. These include cartilage repair, rotator cuff surgery and anterior cruciate ligament surgery. However, conflicting data for these benefits have been reported, most likely due to inconsistencies in both PRF preparation protocols and dosing regimens. Despite this, the literature generally supports the use of PRF as a beneficial adjuvant for a range of chronic muscle, tendon, bone or other soft tissue injuries. Further clinical trials to confirm these benefits require consistency in PRF preparation and the classification of a successful clinical outcome to fully harness its potential.
Collapse
Affiliation(s)
- Alexandru Florian Grecu
- PhD Researcher - University of Medicine and Pharmacy Craiova, str. Petru Rares no.2, 200349, Craiova, Romania.
| | - Lucien Reclaru
- Varinor Matériaux SA, 7 St-Georges str, CH 2800, Delémont, Switzerland.
| | - Lavinia Cosmina Ardelean
- "Victor Babes" University of Medicine and Pharmacy from Timisoara, Dept. of Technology of Materials and 9 Devices in Dental Medicine,2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Oliviu Nica
- PhD Researcher - University of Medicine and Pharmacy Craiova, str. Petru Rares no.2, 200349, Craiova, Romania.
| | - Eduard Mihai Ciucă
- Department of Oro-Maxilo-Facial Surgery ⁻ University of Medicine and Pharmacy Craiova, str. Petru Rares, no.2, 200349 Craiova, Romania.
| | - Marius Eugen Ciurea
- Department of Plastic Surgery - University of Medicine and Pharmacy of Craiova, str. Petru Rares, no.2, 200349 Craiova, Romania.
| |
Collapse
|
17
|
Zhu T, Guo WH. [Dentin matrix in tissue regeneration: a progress report]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:92-96. [PMID: 30854827 DOI: 10.7518/hxkq.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lesions on tissues and organs critically affect quality of life, due to severe tissue defects that are threatening. Tissue repair and functional reconstruction are concurrent challenges in modern medicine. Tissue engineering brings hope for tissue and organ regeneration. Scaffolds provide a microenvironment for cell growth, proliferation and differentiation. Moreover, scaffolds influence the size and morphology of regenerated tissues. Dentin matrix, which is a natural bioactive and biocompatible scaffold, has become a research hotspot in recent years and has been widely used in tissue engineering. Studies on the use of dentin matrix as scaffolds have made a series of important progress in tooth root, periodontal, dental pulp and bone regeneration. This review demonstrates the biological characteristics of dentin matrix as bioactive scaffolds, describes the application of dentin matrix in tissue regeneration and provides a theoretical basis for the use of a dentin matrix in clinical applications.
Collapse
Affiliation(s)
- Tian Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei-Hua Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 2018; 13:58-75. [PMID: 30376696 DOI: 10.1002/term.2769] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/16/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
More than two thirds of the global population suffers from tooth decay, which results in cavities with various levels of lesion severity. Clinical interventions to treat tooth decay range from simple coronal fillings to invasive root canal treatment. Pulp capping is the only available clinical option to maintain the pulp vitality in deep lesions, but irreversible pulp inflammation and reinfection are frequent outcomes for this treatment. When affected pulp involvement is beyond repair, the dentist has to perform endodontic therapy leaving the tooth non-vital and brittle. On-going research strategies have failed to overcome the limitations of existing pulp capping materials so that healthy and progressive regeneration of the injured tissues is attained. Preserving pulp vitality is crucial for tooth homeostasis and durability, and thus, there is a critical need for clinical interventions that enable regeneration of the dentin-pulp complex to rescue millions of teeth annually. The identification and development of appropriate biomaterials for dentin-pulp scaffolds are necessary to optimize clinical approaches to regenerate these hybrid dental tissues. Likewise, a deep understanding of the interactions between the micro-environment, growth factors, and progenitor cells will provide design basis for the most fitting scaffolds for this purpose. In this review, we first introduce the long-lasting clinical dental problem of rescuing diseased tooth vitality, the limitations of current clinical therapies and interventions to restore the damaged tissues, and the need for new strategies to fully revitalize the tooth. Then, we comprehensively report on the characteristics of the main materials of naturally-derived and synthetically-engineered polymers, ceramics, and composite scaffolds as well as their use in dentin-pulp complex regeneration strategies. Finally, we present a series of innovative smart polymeric biomaterials with potential to overcome dentin-pulp complex regeneration challenges.
Collapse
Affiliation(s)
- Dina G Moussa
- Minnesota Dental Research Centre for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota.,Department of Conservative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Conrado Aparicio
- Minnesota Dental Research Centre for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:419-442. [PMID: 29724156 DOI: 10.1089/ten.teb.2018.0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Collapse
Affiliation(s)
- Valérie Orti
- LBN, Université de Montpellier , Montpellier, France
| | | | | | - Orsolya Pall
- LBN, Université de Montpellier , Montpellier, France
| | | | | |
Collapse
|
20
|
Menchisheva Y, Mirzakulova U, Yui R. Use of platelet-rich plasma to facilitate wound healing. Int Wound J 2018; 16:343-353. [PMID: 30440099 DOI: 10.1111/iwj.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Platelet-rich plasma (PRP) is widely used nowadays in different fields of medicine, affecting physiological processes including tissue regeneration. The use of PRP in maxillofacial surgical interventions and its efficiency in the improvement of postoperative wound healing were analysed. Patients undergoing plastic and reconstructive surgeries in the maxillofacial region were recruited: 50 patients were enrolled into a control group (received no PPRP injection) and 50 patients were enrolled into a treatment group, where PRP was applied during the surgical procedure. Evaluation of treatment outcomes was carried out by determination of IL-1β, TNFα, and IL-6 cytokines levels in the wound-drain fluid. The stages of wound healing were assessed by cytological analyses and ultrasound within a month period. The use of the PRP has substantially positive effects, contributing to the improvement of the healing process. In the treatment group, fibroblasts, macrophages, and collagen fibres appeared and their quantities increased earlier than when compared with control group patients. The concentration of IL-1β and TNFα in wound fluid on day 1 and day 5 after operation was higher for the treatment group as opposed to the control group, which was linked to the influence of PRP on inflammatory and granulation phases of the healing process. An ultrasound examination showed less oedema and infiltration in the tissues around the wound of the treatment group.
Collapse
Affiliation(s)
- Yuliya Menchisheva
- Department of Surgical Dentistry, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ulmeken Mirzakulova
- Department of Surgical Dentistry, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Rudolf Yui
- Department of Hystology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
21
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
22
|
Sheu SY, Wang CH, Pao YH, Fu YT, Liu CH, Yao CH, Kuo TF. The effect of platelet-rich fibrin on autologous osteochondral transplantation: An in vivo porcine model. Knee 2017; 24:1392-1401. [PMID: 29037743 DOI: 10.1016/j.knee.2017.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND This work aimed to evaluate the efficacy of cartilage transplantation to the medial femoral condyle±platelet-rich fibrin (PRF) augmentation in a porcine model. The hypothesis of the study was that PRF may act as a bioactive cell scaffold to fill defects and enhance cartilage regeneration. METHODS Thirty-two knees of 16 miniature pigs were randomly assigned to four groups. The critical-size osteochondral defects (8x5mm) in femoral condyle of both knees were treated with one of the following: group 1-untreated controls; group 2-cartilage fragments alone; group 3-PRF alone; group 4-PRFT+cartilage fragments. After completion of the surgical implantation, the periosteal patch harvested from the proximal tibia was sutured onto the cartilage of the medial condyle to cover the implanted defects. Animals were sacrificed at six months after treatment. The regenerated cartilages were assessed by gross inspection and histological examination. RESULTS The best results were obtained with the repair tissue being hyaline-like cartilage (group 4). The grading score of histological evaluation demonstrated that group 4 had better matrix, cell distribution and cartilage mineralization than group 2 and group 3. PRF showed a positive effect on the cartilage repair; the procedure was more effective when PRF was combined with autologous chondrocytes. CONCLUSIONS This approach may provide a successfully employed technique to target cartilage defects in vivo. Larger groups and longer periods of study may provide more definitive and meaningful support for using this therapeutic approach as a new way of cartilage regeneration.
Collapse
Affiliation(s)
- S Y Sheu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C H Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y H Pao
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Y T Fu
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - C H Liu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - C H Yao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - T F Kuo
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan.
| |
Collapse
|
23
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
24
|
Hosseini S, Jahangir S, Eslaminejad MB. Tooth tissue engineering. BIOMATERIALS FOR ORAL AND DENTAL TISSUE ENGINEERING 2017:467-501. [DOI: 10.1016/b978-0-08-100961-1.00027-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Wu CC, Sheu SY, Hsu LH, Yang KC, Tseng CC, Kuo TF. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: Anin vivostudy in rabbits. J Biomed Mater Res B Appl Biomater 2016; 105:1536-1543. [DOI: 10.1002/jbm.b.33688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/24/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei 10002 Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City 23702 Taiwan
| | - Shi-Yuan Sheu
- School of Medicine, Chung Shan Medical University; Taichung 40201 Taiwan
- Department of Integrated Chinese and Western Medicine; Chung Shan Medical University Hospital; Taichung 40201 Taiwan
- Department of Occupational Therapy; Asia University; Taichung 41354 Taiwan
| | - Li-Ho Hsu
- Department of Orthopedics; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei 10002 Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City 23702 Taiwan
| | - Kai-Chiang Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University; Taipei 11031 Taiwan
| | - Chia-Chuan Tseng
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University; Taipei 10617 Taiwan
| | - Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University; Taipei 10617 Taiwan
- Department of Post-Baccalaureate Veterinary Medicine; Asia University; Taichung 41354 Taiwan
| |
Collapse
|
26
|
Yang KC, Kitamura Y, Wu CC, Chang HH, Ling TY, Kuo TF. Tooth Germ-Like Construct Transplantation for Whole-Tooth Regeneration: An In Vivo Study in the Miniature Pig. Artif Organs 2015; 40:E39-50. [DOI: 10.1111/aor.12630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery; Matsumoto Dental University; Nagano Japan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City Taiwan
| | - Hao-Hueng Chang
- Department of Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Thai-Yen Ling
- Institute of Pharmacology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine; School of Veterinary Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
27
|
Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:562-74. [DOI: 10.1016/j.oooo.2015.06.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
|
28
|
Rodella LF, Bonazza V. Platelet preparations in dentistry: How? Why? Where? When? World J Stomatol 2015; 4:39-55. [DOI: 10.5321/wjs.v4.i2.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this article is to review the outcomes of platelet preparations in dentistry. A structured electronic search discovered 348 articles, which described the use of autologous platelet concentrates with a relevance to clinical dentistry. Among these articles, 220 articles investigated platelet rich plasma, 99 investigated platelet rich fibrin, 22 investigated plasma rich in growth factors and 7 investigated the use of concentrated growth factors. Several studies reported beneficial treament outcomes in terms of enhanced bone and soft tissue regeneration.
Collapse
|
29
|
Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I. Dental Stem Cells in Pulp Regeneration: Near Future or Long Road Ahead? Stem Cells Dev 2015; 24:1610-22. [PMID: 25869156 DOI: 10.1089/scd.2014.0510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although regenerative endodontic procedures have yielded an impressive body of favorable outcomes, the treatment of necrotic immature permanent teeth in particular remains to be a challenge. Recent advances in dental stem cell (DSC) research have gained increasing insight in their regenerative potential and prospective use in the formation of viable dental tissues. Numerous studies have already reported successful dental pulp regeneration following application of dental pulp stem cells, stem cells from the apical papilla, or dental follicle precursor cells in different in vivo models. Next to responsive cells, dental tissue engineering also requires the support of an appropriate scaffold material, ranging from naturally occurring polymers to treated dentin matrix components. However, the routine use and banking of DSCs still holds some major challenges, such as culture-associated differences, patient-related variability, and the effects of culture medium additives. Only in-depth evaluation of these problems and the implementation of standardized models and protocols will effectively lead to better alternatives for patients who no longer benefit from current treatment protocols.
Collapse
Affiliation(s)
- Petra Hilkens
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Nastaran Meschi
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Paul Lambrechts
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Annelies Bronckaers
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Ivo Lambrichts
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| |
Collapse
|
30
|
Chou CH, Chen YG, Lin CC, Lin SM, Yang KC, Chang SH. Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study. Tissue Eng Part A 2015; 20:2493-502. [PMID: 25211643 DOI: 10.1089/ten.tea.2013.0174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fish scales, which consist of type I collagen and hydroxyapatite (HA), were used to fabricate a bioabsorbable bone pin in this study. Fresh fish scales were decellularized and characterized to provide higher biocompatibility. The mechanical properties of fish scales were tested, and the microstructure of an acellular fish scale was examined. The growth curve of a myoblastic cell line (C2C12), which was cultured on the acellular fish scales, implied biocompatibility in vitro, and the morphology of the cells cultured on the scales was observed using scanning electron microscopy (SEM). A bone pin made of decellularized fish scales was used for the internal fixation of femur fractures in New Zealand rabbits. Periodic X-ray evaluations were obtained, and histologic examinations were performed postoperatively. The present results show good cell growth on decellularized fish scales, implying great biocompatibility in vitro. Using SEM, the cell morphology revealed great adhesion on a native, layered collagen structure. The Young's modulus was 332 ± 50.4 MPa and the tensile strength was 34.4 ± 6.9 MPa for the decellularized fish scales. Animal studies revealed that a fish-scale-derived bone pin improved the healing of bone fractures and degraded with time. After an 8-week implantation, the bone pin integrated with the adjacent tissue, and new extracellular matrix was synthesized around the implant. Our results proved that fish-scale-derived bone pins are a promising implant material for bone healing and clinical applications.
Collapse
Affiliation(s)
- Cheng-Hung Chou
- 1 Department of Research, Body Organ Biomedical Corp., Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
ABSTRACT
Aim
Fibrin sealant is a biological tissue adhesive mimicking the final stage of coagulation. It has a wide variety of application in the field of periodontics. The aim of this article was to review current applications and identify potential use of fibrin sealant in periodontal surgical procedures on an evidence-based conclusion.
Materials and methods
An online search was performed in PubMed, Google Scholar and Cochrane Library databases using keywords fibrin sealant, fibrin glue, fibrin, regeneration, wound healing, tissue adhesive, gingival recession/therapy, surgical therapy, periodontal, and periodontitis in a mutually inclusive manner. The studies were evaluated by two independent reviewers for inclusion in this literature review.
Results
Out of 196 research papers identified, 59 articles were selected by the authors for this literature review, giving preference to clinical trials related to periodontal application.
Conclusion
Use of fibrin sealant is a simple, safe, costeffective, and rapid way to fix flaps and grafts avoiding any postoperative bleeding. Fibrin sealant has the property for regeneration when used in conjunction with a barrier membrane for formation of new connective tissue attachment. It is effective in microsurgical procedures and closing flaps around implant site. They initiate early wound healing through collagen synthesis and fibroblast proliferation. Fibrin sealant may be an alternate biomaterial for periodontal surgery which may stimulate periodontal wound healing and regeneration.
How to cite this article
Jacob S, Nath S. Fibrin Sealant: A Review of Its Applications in Periodontal Surgery. Int J Experiment Dent Sci 2015;4(1):40-46.
Collapse
|
32
|
Zheng L, Wang L, Qin J, Sun X, Yang T, Ni Y, Zhou Y. New Biodegradable Implant Material Containing Hydrogel with Growth Factors of Lyophilized PRF in Combination with an nHA/PLGA Scaffold. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ling Zheng
- Implant Center, Stomatology Hospital of Jilin University
| | - Lin Wang
- VIP Integrated Department, Stomatology Hospital of Jilin University
| | - Jie Qin
- Implant Center, Stomatology Hospital of Jilin University
| | - Xiaolin Sun
- Implant Center, Stomatology Hospital of Jilin University
| | - Tingting Yang
- Implant Center, Stomatology Hospital of Jilin University
| | - Yuxin Ni
- Implant Center, Stomatology Hospital of Jilin University
| | - Yanmin Zhou
- Implant Center, Stomatology Hospital of Jilin University
| |
Collapse
|
33
|
Lai WF, Lee JM, Jung HS. Molecular and engineering approaches to regenerate and repair teeth in mammals. Cell Mol Life Sci 2014; 71:1691-701. [PMID: 24270857 PMCID: PMC11113857 DOI: 10.1007/s00018-013-1518-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Continuous replacement of teeth throughout the lifespan of an individual is possibly basal for most of the vertebrates including fish and reptiles; however, mammals generally have a limited capacity of tooth renewal. The ability to induce cellular differentiation in adults to replace lost or damaged cells in mammals, or to tissue-engineer organs in vitro, has hence become one of the major goals of regenerative medicine. In this article, we will revisit some of the important signals and tissue interactions that regulate mammalian tooth development, and will offer a synopsis of the latest progress in tooth regeneration and repair via molecular and engineering approaches. It is hoped that this article will not only offer an overview of recent technologies in tooth regeneration and repair but will also stimulate more interdisciplinary research in this field to turn the pursuit of tooth regeneration and repair into practical reality.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective. ISRN SURGERY 2014; 2014:203943. [PMID: 24729902 PMCID: PMC3960746 DOI: 10.1155/2014/203943] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Background. Fibrin sealant became the first modern era material approved as a hemostat in the United States in 1998. It is the only agent presently approved as a hemostat, sealant, and adhesive by the Food and Drug Administration (FDA). The product is now supplied as patches in addition to the original liquid formulations. Both laboratory and clinical uses of fibrin sealant continue to grow. The new literature on this material also continues to proliferate rapidly (approximately 200 papers/year). Methods. An overview of current fibrin sealant products and their approved uses and a comprehensive PubMed based review of the recent literature (February 2012, through March 2013) on the laboratory and clinical use of fibrin sealant are provided. Product information is organized into sections based on a classification system for commercially available materials. Publications are presented in sections based on both laboratory research and clinical topics are listed in order of decreasing frequency. Results. Fibrin sealant remains useful hemostat, sealant, and adhesive. New formulations and applications continue to be developed. Conclusions. This agent remains clinically important with the recent introduction of new commercially available products. Fibrin sealant has multiple new uses that should result in further improvements in patient care.
Collapse
|
35
|
Sharma S, Srivastava D, Grover S, Sharma V. Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res 2014; 8:309-15. [PMID: 24596804 PMCID: PMC3939572 DOI: 10.7860/jcdr/2014/7609.3937] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/30/2013] [Indexed: 11/24/2022]
Abstract
Biomaterials play a crucial role in the field of tissue engineering. They are utilized for fabricating frameworks known as scaffolds, matrices or constructs which are interconnected porous structures that establish a cellular microenvironment required for optimal tissue regeneration. Several natural and synthetic biomaterials have been utilized for fabrication of tissue engineering scaffolds. Amongst different biomaterials, polymers are the most extensively experimented and employed materials. They can be tailored to provide good interconnected porosity, large surface area, adequate mechanical strengths, varying surface characterization and different geometries required for tissue regeneration. A single type of material may however not meet all the requirements. Selection of two or more biomaterials, optimization of their physical, chemical and mechanical properties and advanced fabrication techniques are required to obtain scaffold designs intended for their final application. Current focus is aimed at designing biomaterials such that they will replicate the local extra cellular environment of the native organ and enable cell-cell and cell-scaffold interactions at micro level required for functional tissue regeneration. This article provides an insight into the different biomaterials available and the emerging use of nano engineering principles for the construction of bioactive scaffolds in tooth regeneration.
Collapse
Affiliation(s)
- Sarang Sharma
- Associate Professor, Department of Conservative Dentistry and Endodontics, ESIC Dental College and Hospital, Rohini, Delhi-85, India
| | - Dhirendra Srivastava
- Professor, Department of Oral Surgery, ESIC Dental College and Hospital, Rohini, Delhi-85, India
| | - Shibani Grover
- Professor, Department of Conservative Dentistry and Endodontics, ESIC Dental College and Hospital, Rohini, Delhi-85, India
| | - Vivek Sharma
- Assistant Professor, Department of Conservative Dentistry and Endodontics, ESIC Dental College and Hospital, Rohini, Delhi-85, India
| |
Collapse
|
36
|
Naik B, Karunakar P, Jayadev M, Marshal VR. Role of Platelet rich fibrin in wound healing: A critical review. J Conserv Dent 2013; 16:284-93. [PMID: 23956527 PMCID: PMC3740636 DOI: 10.4103/0972-0707.114344] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 02/02/2023] Open
Abstract
AIM The aim is to review and discuss the strategies available for use of platelet rich fibrin as healing aid in dentistry. BACKGROUND Platelet rich fibrin (PRF) is a fibrin matrix in which platelet cytokines, growth factors, and cells are trapped and may be released after a certain time and that can serve as a resorbable membrane. Choukroun and his associates were amongst the pioneers for using PRF protocol in oral and maxillofacial surgery to improve bone healing in implant dentistry. Autologous PRF is considered to be a healing biomaterial, and presently, studies have shown its application in various disciplines of dentistry. MATERIALS AND METHODS By using specific keywords, electronic search of scientific papers was carried out on the entire PubMed database with custom range of 5 years. The electronic search yielded 302 papers; based on inclusion and exclusion criteria which were specifically predetermined, 72 papers were identified as suitable to the inclusion criteria and the remaining 230 papers were excluded. After adding three more selected papers through hand search, full text of all the articles retrieved and review was done. By pooling the extracted data from selected papers, the reviewed data was synthesized. CONCLUSION Recently by showing good promising results with use of the PRF, it has proved to have a good prospect for its use as healing aid in various aspects of the dentistry.
Collapse
Affiliation(s)
- Balaram Naik
- Department of Conservative Dentistry and Endodontics, Sri Dharmasthala Manjunatheshwara College of Dental Sciences, Dharwad, Karnataka, India
| | | | | | | |
Collapse
|
37
|
The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials 2013; 34:5506-20. [DOI: 10.1016/j.biomaterials.2013.03.079] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/27/2013] [Indexed: 01/27/2023]
|
38
|
Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012; 33:6320-44. [PMID: 22695066 DOI: 10.1016/j.biomaterials.2012.05.048] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/20/2012] [Indexed: 02/07/2023]
Abstract
Periodontitis, an inflammatory disease, is the most common cause of tooth loss in adults. Attempts to regenerate the complex system of tooth-supporting apparatus (i.e., the periodontal ligament, alveolar bone and root cementum) after loss/damage due to periodontitis have made some progress recently and provide a useful experimental model for the evaluation of future regenerative therapies. Concentrated efforts have now moved from the use of guided tissue/bone regeneration technology, a variety of growth factors and various bone grafts/substitutes toward the design and practice of endogenous regenerative technology by recruitment of host cells (cell homing) or stem cell-based therapeutics by transplantation of outside cells to enhance periodontal tissue regeneration and its biomechanical integration. This shift is driven by the general inability of conventional therapies to deliver satisfactory outcomes, particularly in cases where the disease has caused large tissue defects in the periodontium. Cell homing and cell transplantation are both scientifically meritorious approaches that show promise to completely and reliably reconstitute all tissue and connections damaged through periodontal disease, and hence research into both directions should continue. In view of periodontal regeneration by paradigms that unlock the body's innate regenerative potential has been reviewed elsewhere, this paper specifically explores and analyses the stem cell types and cell delivery strategies that have been or have the potential to be used as therapeutics in periodontal regenerative medicine, with particular emphasis placed on the efficacy and safety concerns of current stem cell-based periodontal therapies that may eventually enter into the clinic.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|