1
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
2
|
Carbajal-Hernández AL, Valerio-García RC, Martínez-Ruíz EB, Jarquín-Díaz VH, Martínez-Jerónimo F. Maternal-embryonic metabolic and antioxidant response of Chapalichthys pardalis (Teleostei: Goodeidae) induced by exposure to 3,4-dichloroaniline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17534-17546. [PMID: 28597380 DOI: 10.1007/s11356-017-9340-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Chapalichthys pardalis is a viviparous fish, microendemic to the Tocumbo Region in the state of Michoacán, Mexico. Despite the peculiar type of reproduction of goodeid fish and their mother-embryo interaction, the effects on embryos induced by maternal exposure to aquatic xenobiotics are still unknown. The objective of the present work was to determine the maternal-embryonic metabolic and antioxidant response of C. pardalis exposed to 3,4-dichloroaniline (3,4-DCA), a compound considered highly noxious to the environment because of its high toxicity and persistence, which has been used as reference toxicant in toxicological bioassays. We determined the median lethal concentration (LC50, 96 h) and then exposed pregnant females to 3.3, 2.5, and 0.5 mg L-1 of 3,4-DCA (equivalent to LC1, LC0.01, and LC50/10, respectively) during 21 days. We assessed the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), macromolecules content (proteins, lipids, carbohydrates), glucose, and lactate concentration, as well as the oxidative damage, by measuring thiobarbituric acid reactive substances, and protein oxidation. To interpret results, we used the integrated biomarker response (IBRv2). The average LC50 was of 5.18 mg L-1 (4.8-5.5 mg L-1; p = 0.05). All females exposed to concentrations of 3.3 and 2.5 mg L-1 lost 100% of the embryos during the bioassay, whereas those exposed to 0.5 mg L-1 showed alterations in the antioxidant activity and oxidative damage, being the embryos and the maternal liver the most affected, with IBRv2 values of 10.09 and 9.21, respectively. Damage to macromolecules was greater in embryos and the maternal liver, with IBRv2 of 16.14 and 8.40, respectively. We conclude that exposure to xenobiotics, like 3,4-DCA, in species with a marked maternal-embryonic interaction represents a potential risk for the development and survival of the descendants, thereby, potentially affecting the future of the population.
Collapse
Affiliation(s)
- Ana Laura Carbajal-Hernández
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Carlos Valerio-García
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Erika Berenice Martínez-Ruíz
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Víctor Hugo Jarquín-Díaz
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Fernando Martínez-Jerónimo
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
3
|
Arellano-Aguilar O, Betancourt-Lozano M, Aguilar-Zárate G, Ponce de Leon-Hill C. Agrochemical loading in drains and rivers and its connection with pollution in coastal lagoons of the Mexican Pacific. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:270. [PMID: 28510105 DOI: 10.1007/s10661-017-5981-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The state of Sinaloa in Mexico is an industrialized agricultural region with a documented pesticide usage of 700 t year-1; which at least 17 of the pesticides are classified as moderately to highly toxic. Pollutants in the water column of rivers and drains are of great concern because the water flows into coastal lagoons and nearshore waters and thereby affects aquatic organisms. This study was done in four municipalities in the state of Sinaloa that produce food intensively. To investigate the link between pollution in the lagoons and their proximity to agricultural sites, water was sampled in three coastal lagoons and in the rivers and drains that flow into them. Seawater from the Gulf of California, 10 km from the coast, was also analyzed. Concentrations of nutrients, organochlorines, and organophosphorus pesticides were determined. Nutrient determination showed an unhealthy environment with N/P ratios of <16, thus favoring nitrogen-fixing cyanobacteria. The organochlorine pesticides showed a clear accumulation in the coastal lagoons from the drains and rivers, with ΣHCH showing the highest concentrations. In the southern part of the region studied, pollution of the coastal lagoon of Pabellones could be traced mainly to the drains from the agricultural sites. Accumulation of OC pesticides was also observed in the Gulf of California. Tests for 22 organophosphates revealed only five (diazinon, disulfoton, methyl parathion, chlorpyrifos, and mevinphos); diazinon was detected at all the sites, although methyl parathion was present at some sites at concentrations one order of magnitude higher than diazinon.
Collapse
Affiliation(s)
- Omar Arellano-Aguilar
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Claudia Ponce de Leon-Hill
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Cao F, Zhu L, Li H, Yu S, Wang C, Qiu L. Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:1109-1121. [PMID: 27616647 DOI: 10.1016/j.envpol.2016.09.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In the past few decades, extensive application of azoxystrobin has led to great concern regarding its adverse effects on aquatic organisms. The objective of the present study was to evaluate the reproductive toxicity of azoxystrobin to zebrafish. After adult zebrafish of both sexes were exposed to 2, 20 and 200 μg/L azoxystrobin for 21 days, egg production, the fertilization rate, the gonadosomatic index (GSI) and hepatosomatic index (HSI), 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) concentrations, and histological alterations in the gonads and livers were measured. Meanwhile, expression alterations of genes encoding gonadotropins and gonadotropin receptors (fshb, lhb, fshr and lhr), steroid hormone receptors (era, er2b and ar), steroidogenic enzymes (cyp11a, cyp11b, cyp17, cyp19a, cyp19b, hsd3b and hsd17b) in the hypothalamic-pituitary-gonad (HPG) axis and vitellogenin (vtg1 and vtg2) in the livers were also investigated. The results showed that reduced egg production and fertilization rates were observed at 200 μg/L azoxystrobin. In female zebrafish, reduced E2 and Vtg concentrations, decreased GSI, increased T concentrations, and histological alterations in the ovaries and livers were observed at 200 μg/L azoxystrobin, along with significant down-regulation of lhb, cyp19b, lhr, cyp19a, vtg1 and vtg2, and up-regulation of cyp17, hsd3b and hsd17b. In male zebrafish, increased E2 and Vtg concentrations, reduced T concentration and GSI, and histological alterations in the testes and livers were observed after exposure to 20 and 200 μg/L azoxystrobin, along with significant up-regulations of cyp19b, cyp11a, cyp17, cyp19a, hsd3b and hsd17b, vtg1 and vtg2. Moreover, cyp11a, hsd3b, cyp19a, vtg1 and vtg2 in male zebrafish were significantly up-regulated after treatment with 2 μg/L azoxystrobin. The results of the present study indicate that azoxystrobin led to reproductive toxicity in zebrafish and male zebrafish were more sensitive to azoxystrobin than female zebrafish.
Collapse
Affiliation(s)
- Fangjie Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Song Yu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Bioconcentration and Acute Intoxication of Brazilian Freshwater Fishes by the Methyl Parathion Organophosphate Pesticide. BIOMED RESEARCH INTERNATIONAL 2015; 2015:197196. [PMID: 26339593 PMCID: PMC4538366 DOI: 10.1155/2015/197196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022]
Abstract
Three species of freshwater Brazilian fishes (pacu, Piaractus mesopotamicus; piavussu, Leporinus macrocephalus, and curimbatá, Prochilodus lineatus) were exposed to an acute dose of 5 ppm methyl parathion organophosphate pesticide. Three to five individuals per species were exposed, one at a time, to 40 liters tap water spiked with Folidol 600. Pesticide concentrations and cholinesterase (ChE) activities were evaluated in serum, liver, brain, heart, and muscle. The bioconcentration of methyl parathion was similar for all studied fishes. Brain tissue showed the highest pesticide concentration, reaching 80 ppm after exposure for 30 min to methyl parathion. Three to 5 hours of 5 ppm methyl parathion exposure provoked the death of all P. lineatus at 92% brain AChE inhibition, whereas fish from the other two species survived for up to 78 hours with less than 80% brain AChE inhibition. Our results indicate that acute toxic effects of methyl parathion to fish are correlated with brain AChE sensitivity to methyl paraoxon.
Collapse
|
6
|
Senthilkumaran B. Pesticide- and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts - A review. Gen Comp Endocrinol 2015; 219:136-42. [PMID: 25637674 DOI: 10.1016/j.ygcen.2015.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023]
Abstract
Pesticide-induced endocrine disruption often mimics sex steroidal action resulting in physiological functional disarray of hypothalamo-hypophyseal-gonadal (HHG) system at multiple levels. Among various group of pesticides, organochlorine and organophosphate family of pesticides are known to impart sex steroidal mimicking activity with slightly higher resemblance to estrogens when compared to androgenic action. This review will highlight the effects of organochlorine (for e.g. endosulfan) and organophosphate (for e.g. malathion) pesticides in comparison with sex-steroid analogue-induced changes on HHG axis during gametogenesis in few teleost fish models. Interestingly, the effects of these compounds have produced differential effects in juveniles and adults which also vary based on exposure dosage and duration. Further, the treatments had caused at times sexually dimorphic effects indicating that the action of these compounds bring out serious implications in sexual development. A comprehensive overview has been provided by considering all these aspects to recognize the adverse impacts of pesticide-induced endocrine disruption with special reference to endosulfan and malathion as those had been applied even today or used before for controlling agricultural pests in several Asian countries including India. This review also compares the effects of sex-steroid analogues where in sex reversal to reproductive dysfunction is evident, which may imply the extent of sexual plasticity in teleosts compared to other vertebrates.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
7
|
Vera Candioti J, Soloneski S, Larramendy ML. Genotoxic and cytotoxic effects of the formulated insecticide Aficida® on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 703:180-6. [DOI: 10.1016/j.mrgentox.2010.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 11/24/2022]
|
8
|
Sexual Conflict and Sexual Selection in the Goodeinae, a Clade of Viviparous Fish with Effective Female Mate Choice. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)42001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|