1
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
2
|
Mohamed AAA, Soliman SS, Soliman ASH, Hanafy A, Jin Y. Endoplasmic reticulum stress is involved in mycotoxin zearalenone induced inflammatory response, proliferation, and apoptosis in goat endometrial stromal cells. Reprod Biol 2024; 24:100948. [PMID: 39232304 DOI: 10.1016/j.repbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Zearalenone (ZEA) is an estrogen-like mycotoxin and is considered a secondary metabolite produced by Fusarium fungi, which are widely found in the surrounding environment. ZEA has been found to cause reproductive dysfunction in female and male animals, but the underlying mechanism remains unclear. Therefore, this study examined cell proliferation, cell apoptosis, autophagy protein expression, and some inflammatory cytokines such as IL-1β and IL-8 of goat endometrial stromal cells (ESCs) induced by different concentrations (0, 15, 30, 60, and 90 µM) of ZEA. The apoptosis rate was detected by flow cytometry. Western Blot and ELISA assay were used to identify the ER stress signaling pathway and some inflammatory cytokines. Our results revealed that ZEA induced cell proliferation and inhibited cell apoptosis at low and middle concentrations, while at high concentrations of ZEA, cell apoptosis was induced in ESCs. Additionally, ZEA induced the ER stress protein markers such as ATF6, IRE1α, EIF2α, and ATF4. LC3 as a marker of autophagy was up-regulated at all concentrations of ZEA. Moreover, IL-1β and IL-8 showed down-regulation at a low concentration of ZEA, but middle and high concentrations showed up-regulation. In the present study, Knockdown ERN1 can inhibit autophagy and the main markers of ER stress. These results suggest that the IRE1 pathway can reduce apoptosis protein markers, down activate IRE1, and unfolded protein response branches such as ATF6 and LC3 in ESCs. Additionally, IL-1β and IL-8 achieve up-regulation under knockdown IRE1, which can block ER stress markers.
Collapse
Affiliation(s)
- Amira Abdalla Abdelshafy Mohamed
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Department of Animal Production, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, North-Sinai 45511, Egypt.
| | - Seham Samir Soliman
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ahmed S H Soliman
- Department of Animal Production, Faculty of Agriculture, New Vally University, Al kharga city, New Vally, Egypt
| | - Ahmed Hanafy
- Department of Animal Production, Faculty of Agricultural, Suez Canal University, Ismalilia 41522, Egypt
| | - Yaping Jin
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
3
|
Li X, Zhang F, Wang J, Feng Y, Zhang S, Li L, Tan J, Shen W. LncRNA profiles of Cyanidin-3-O-glucoside ameliorated Zearalenone-induced damage in porcine granulosa cells. Gene 2023; 884:147693. [PMID: 37549855 DOI: 10.1016/j.gene.2023.147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fali Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jingya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Animal Husbandry General Station of Shandong Province, Jinan 250010, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yang SJ, Wang YS, Zhang LD, Ding ZM, Zhou X, Duan ZQ, Liu M, Liang AX, Huo LJ. High-dose synthetic phenolic antioxidant propyl gallate impairs mouse oocyte meiotic maturation through inducing mitochondrial dysfunction and DNA damage. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37052413 DOI: 10.1002/tox.23807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.
Collapse
Affiliation(s)
- Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Li X, Wang J, Zhang F, Yu M, Zuo N, Li L, Tan J, Shen W. Cyanidin-3-O-Glucoside Rescues Zearalenone-Induced Apoptosis via the ITGA7-PI3K-AKT Signaling Pathway in Porcine Ovarian Granulosa Cells. Int J Mol Sci 2023; 24:ijms24054441. [PMID: 36901882 PMCID: PMC10002597 DOI: 10.3390/ijms24054441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingya Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fali Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Wei Shen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: ; Tel.: +86-0532-58957316
| |
Collapse
|
7
|
Cai P, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. ENVIRONMENTAL TOXICOLOGY 2023; 38:278-288. [PMID: 36288102 DOI: 10.1002/tox.23694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, β-ZEL, α-ZEL, and β-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Effects of Zearalenone on Apoptosis and Copper Accumulation of Goat Granulosa Cells In Vitro. BIOLOGY 2023; 12:biology12010100. [PMID: 36671791 PMCID: PMC9856194 DOI: 10.3390/biology12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell survival as a metal ion, can consist of a variety of enzymes that facilitate abundant metabolic processes. However, the accumulation of copper in cells can have toxic effects. Here, we intended to determine whether ZEA could impair goat granulosa cells (GCs) and alter the cellular copper concentration. GCs were divided into a negative control (NC) group (cells cultured with 0.1% dimethyl sulfoxide (DMSO) for 8 h) and a ZEA group (cells cultured with 200 μmol/L ZEA diluted in DMSO for 8 h). The results showed that ZEA could inhibit GC proliferation and impair cell viability. GCs showed significant increases in the apoptosis rate and oxidative stress levels, while their ability to synthesize estrogen decreased. In addition, RNA-seq results showed dramatic changes in the expression of copper transport-related genes. The expression levels of ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B) were significantly downregulated (p < 0.01), while the expression of solute carrier family 31 member 1 (SLC31A1) was not modified in the ZEA group compared with the NC group. In accordance with these trends, the copper concentration increased significantly in the ZEA group (p < 0.01). In summary, our results show that ZEA can negatively affect GCs and cause copper accumulation. This finding may provide a prospective line of research on the relationship between ZEA and the transport of copper ions in GCs.
Collapse
|
9
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
10
|
Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113756. [PMID: 35691196 DOI: 10.1016/j.ecoenv.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Innovation centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Wang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Ji YM, Zhang KH, Pan ZN, Ju JQ, Zhang HL, Liu JC, Wang Y, Sun SC. High-dose zearalenone exposure disturbs G2/M transition during mouse oocyte maturation. Reprod Toxicol 2022; 110:172-179. [DOI: 10.1016/j.reprotox.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
|
12
|
Wang Y, Xing CH, Chen S, Sun SC. Zearalenone exposure impairs organelle function during porcine oocyte meiotic maturation. Theriogenology 2022; 177:22-28. [PMID: 34656833 DOI: 10.1016/j.theriogenology.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Zearalenone (ZEN) is one of the secondary metabolites of Fusarium and is regarded as a common contaminant of foodstuffs especially corn products. ZEN is considered to be cytotoxic, tissue toxic, genotoxic and reproductive toxic, which acts as a serious threat for humans and animals. In this study, we investigated the effects of ZEN on organelle function during porcine oocyte meiotic maturation. Our results showed that the expansion of cumulus granulosa cells and the extrusion of oocyte polar body were disturbed after ZEN exposure. Besides the aberrant mitochondrial distribution and impaired mitochondrial membrane potential after ZEN treatment during porcine oocyte maturation. We also found the fluorescence intensity of ER was decreased, and ZEN exposure altered ER stress level, showing with the reduced expression of GRP78. We also found that the spindle cortex distribution of Golgi apparatus was disrupted in ZEN-exposed oocytes, which was confirmed by the decreased level of GM130, moreover, our data also showed that Rab11-based vesical transport was disturbed, indicating the Golgi apparatus function was disrupted. Besides, the fluorescence intensity of lysosome was significantly increased, indicating the protein degradation and the potential autophagy occurrence after ZEN treatment. Thus, our results demonstrated that exposure to ZEN affected porcine oocyte meiotic maturation through its wide effects on organelle function for protein synthesis, transport and degradation.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Toxic effects of methomyl on mouse oocytes and its possible mechanisms. ZYGOTE 2021; 30:358-364. [PMID: 34676817 DOI: 10.1017/s0967199421000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Methomyl is a broad-spectrum carbamate insecticide that has a variety of toxic effects on humans and animals. However, there have been no studies on the toxicity of methomyl in female mammalian oocytes. This study investigated the toxic effects of environmental oestrogen methomyl exposure on mouse oocyte maturation and its possible mechanisms. Our results indicated that methomyl exposure inhibited polar body extrusion in mouse oocytes. Compared with that in the control group, in the methomyl treatment group, superoxide anion free radicals in oocytes were significantly increased. In addition, the mitochondrial membrane potential of metaphase II stage oocytes in the methomyl treatment group was significantly decreased, resulting in reduced mouse oocyte quality. After 8.5 h of exposure to methomyl, metaphase I stage mouse oocytes displayed an abnormal spindle morphology. mRNA expression of the pro-apoptotic genes Bax and Caspase-3 in methomyl-treated oocytes increased, which confirmed the apoptosis. Collectively, our results indicated that mouse oocyte maturation is defective after methomyl treatment at least through disruption of spindle morphology, mitochondrial function and by induction of oxidative stress.
Collapse
|
14
|
Wu Y, Li M, Yang M. Post-Translational Modifications in Oocyte Maturation and Embryo Development. Front Cell Dev Biol 2021; 9:645318. [PMID: 34150752 PMCID: PMC8206635 DOI: 10.3389/fcell.2021.645318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Mammalian oocyte maturation and embryo development are unique biological processes regulated by various modifications. Since de novo mRNA transcription is absent during oocyte meiosis, protein-level regulation, especially post-translational modification (PTM), is crucial. It is known that PTM plays key roles in diverse cellular events such as DNA damage response, chromosome condensation, and cytoskeletal organization during oocyte maturation and embryo development. However, most previous reviews on PTM in oocytes and embryos have only focused on studies of Xenopus laevis or Caenorhabditis elegans eggs. In this review, we will discuss the latest discoveries regarding PTM in mammalian oocytes maturation and embryo development, focusing on phosphorylation, ubiquitination, SUMOylation and Poly(ADP-ribosyl)ation (PARylation). Phosphorylation functions in chromosome condensation and spindle alignment by regulating histone H3, mitogen-activated protein kinases, and some other pathways during mammalian oocyte maturation. Ubiquitination is a three-step enzymatic cascade that facilitates the degradation of proteins, and numerous E3 ubiquitin ligases are involved in modifying substrates and thus regulating oocyte maturation, oocyte-sperm binding, and early embryo development. Through the reversible addition and removal of SUMO (small ubiquitin-related modifier) on lysine residues, SUMOylation affects the cell cycle and DNA damage response in oocytes. As an emerging PTM, PARlation has been shown to not only participate in DNA damage repair, but also mediate asymmetric division of oocyte meiosis. Each of these PTMs and external environments is versatile and contributes to distinct phases during oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Kinkade CW, Rivera-Núñez Z, Gorcyzca L, Aleksunes LM, Barrett ES. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins (Basel) 2021; 13:373. [PMID: 34073731 PMCID: PMC8225184 DOI: 10.3390/toxins13060373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Contamination of the world's food supply and animal feed with mycotoxins is a growing concern as global temperatures rise and promote the growth of fungus. Zearalenone (ZEN), an estrogenic mycotoxin produced by Fusarium fungi, is a common contaminant of cereal grains and has also been detected at lower levels in meat, milk, and spices. ZEN's synthetic derivative, zeranol, is used as a growth promoter in United States (US) and Canadian beef production. Experimental research suggests that ZEN and zeranol disrupt the endocrine and reproductive systems, leading to infertility, polycystic ovarian syndrome-like phenotypes, pregnancy loss, and low birth weight. With widespread human dietary exposure and growing experimental evidence of endocrine-disrupting properties, a comprehensive review of the impact of ZEN, zeranol, and their metabolites on the female reproductive system is warranted. The objective of this systematic review was to summarize the in vitro, in vivo, and epidemiological literature and evaluate the potential impact of ZEN, zeranol, and their metabolites (commonly referred to as mycoestrogens) on female reproductive outcomes. We conducted a systematic review (PROSPERO registration CRD42020166469) of the literature (2000-2020) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data sources were primary literature published in English obtained from searching PubMed, Web of Science, and Scopus. The ToxR tool was applied to assess risk of bias. In vitro and in vivo studies (n = 104) were identified and, overall, evidence consistently supported adverse effects of mycoestrogens on physiological processes, organs, and tissues associated with female reproduction. In non-pregnant animals, mycoestrogens alter follicular profiles in the ovary, disrupt estrus cycling, and increase myometrium thickness. Furthermore, during pregnancy, mycoestrogen exposure contributes to placental hemorrhage, stillbirth, and impaired fetal growth. No epidemiological studies fitting the inclusion criteria were identified.
Collapse
Affiliation(s)
- Carolyn W. Kinkade
- Joint Graduate Program in Exposure Science, Department of Environmental Sciences, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Ludwik Gorcyzca
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ 08554, USA;
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Xu Y, Sun MH, Li XH, Ju JQ, Chen LY, Sun YR, Sun SC. Modified hydrated sodium calcium aluminosilicate-supplemented diet protects porcine oocyte quality from zearalenone toxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:124-132. [PMID: 32683748 DOI: 10.1002/em.22399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEN) is one of the most common mycotoxins produced by fungus in contaminated feed. ZEN has multiple toxicities, including reproductive toxicity of domestic animals, particularly pigs. However, studies on the effects of ZEN on ovary/oocytes have been primarily based on in vitro experiments, and there is still no evidence from porcine in vivo models due to multiple limitations. Moreover, no report has investigated the effect of hydrated sodium calcium aluminosilicate (HSCAS) as a supplement on pig oocyte quality. In the present study, we fed pigs a 1.0 mg/kg ZEN-contaminated diet for 10 days. The results showed that pigs fed ZEN presented reduced oocyte-cumulus cell interactions, an increase in the number of denuded oocytes in ovaries, a decrease in the number of oocytes in each ovary, and an increase in the oocyte death rate. Oocytes from ZEN-exposed pigs exhibited a delayed cell cycle and abnormal cytoskeletal dynamics during meiotic maturation, which could be due to oxidative stress-induced autophagy. Moreover, we also show that supplementing the ZEN-contaminated diet with modified HSCAS effectively protected porcine oocyte quality. Taken together, our study provides in vivo data demonstrating the protective effects of HSCAS against ZEN toxicity in porcine oocytes.
Collapse
Affiliation(s)
- Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Melatonin alleviates defects induced by zearalenone during porcine embryo development. Theriogenology 2020; 151:66-73. [DOI: 10.1016/j.theriogenology.2020.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
|
18
|
Karaman E, Ariman I, Ozden S. Responses of oxidative stress and inflammatory cytokines after zearalenone exposure in human kidney cells. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zearalenone is a mycotoxin widely found worldwide that is produced by several fungal species. Due to its similarity to estradiol, it has been shown to have toxic effects on the reproductive system. Although various animal studies have been conducted to investigate the toxic effects of zearalenone, the mechanisms of toxicity have not been fully elucidated. The aim of the study was to investigate the dose-dependent toxic effects of zearalenone exposure in human kidney cells. The half-maximal inhibitory concentration values of zearalenone in HK-2 cells were found to be 133.42 and 101.74 µM in MTT- and NRU-tests, respectively. Zearalenone exposure at concentrations of 1, 10 and 50 µM decreased cell proliferation by 2.1, 11.07 and 24.34%, respectively. Reactive oxygen species levels increased significantly in a dose-dependent manner. A significant increase was observed in the expressions of MGMT, α-GST, Hsp70 and HO-1 genes, which are associated with oxidative damage, while a significant decrease in L-Fabp gene expression was observed. Moreover, zearalenone increased gene expression of inflammatory cytokines, such as IL-6, IL-8, TNFα and MAPK8. Significant increases were observed at the level of global DNA methylation and expression of DNMT1 in all exposure groups. These results indicate that changes in DNA methylation and oxidative damage may play an important role in the toxicity of zearalenone.
Collapse
Affiliation(s)
- E.F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010-Topkapi, Istanbul, Turkey
| | - I. Ariman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - S. Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| |
Collapse
|
19
|
Karaman EF, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol Lett 2020; 326:52-60. [PMID: 32119988 DOI: 10.1016/j.toxlet.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
Zearalenone, produced by various Fusarium species, is a non-steroidal estrogenic mycotoxin that contaminates cereals, resulting in adverse effects on human health. We investigated the effects of zearalenone and its metabolite alpha zearalenol on epigenetic modifications and its relationship with metabolic pathways in human hepatocellular carcinoma cells following 24 h of exposure. Zearalenone and alpha zearalenol at the concentrations of 1, 10 and 50 μM significantly increased global levels of DNA methylation and global histone modifications (H3K27me3, H3K9me3, H3K9ac). Expression levels of the chromatin modifying enzymes EHMT2, ESCO1, HAT1, KAT2B, PRMT6 and SETD8 were upregulated by 50 μM of zearalenone exposure using PCR arrays, consistent with the results of global histone modifications. Zearalenone and alpha zearalenol also changed expression levels of the AhR, LXRα, PPARα, PPARɣ, L-fabp, LDLR, Glut2, Akt1 and HK2 genes, which are related to nuclear receptors and metabolic pathways. PPARɣ, a key regulator of lipid metabolism, was selected from among these genes for further analysis. The PPARɣ promoter reduced methylation significantly following zearalenone exposure. Taken together, the epigenetic mechanisms of DNA methylation and histone modifications may be key mechanisms in zearalenone toxicity. Furthermore, effects of zearalenone in metabolic pathways could be mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, 34010, Topkapi, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
20
|
Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation. Aging (Albany NY) 2019; 10:3486-3506. [PMID: 30472698 PMCID: PMC6286824 DOI: 10.18632/aging.101660] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Zearalenone (ZEA) is a well-known exogenous endocrine disruptor and can lead to severe negative effects on the human and animal reproductive process. Using a follicle culture model, we have previously shown that ZEA exposure significantly affected the follicular development and antrum formation but the underlying mechanisms are not well known. Therefore, in this study, we explored the metabolomic changes of granulosa cell (GC) culture media with or without ZEA exposure. The results showed that ZEA significantly increased phosphatidylcholine or phosphatidyl ethanolamine adducts in culture medium. A comprehensive analysis with the metabolome data from follicular fluid of small and large antral follicles showed that lyso phosphatidylcholine (LPC) was accumulated during follicle growth, but was depleted by ZEA exposure. Exogenous supplement with LPC to the follicle growth media or oocyte maturation media can partly protect the defect of ZEA exposure on follicular antrum formation and oocyte maturation. Taken together, our results demonstrate that ZEA exposure hinders the follicular growth and exogenous LPC can practically protect the defect of ZEA on follicular development and oocyte maturation.
Collapse
|
21
|
Wang X, Jiang L, Shi L, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Zhang H, Wang Y, Liu X. Zearalenone induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells. Toxicology 2019; 428:152304. [PMID: 31586597 DOI: 10.1016/j.tox.2019.152304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEA), one of the mycotoxins widely found in food and feed, can stimulate an inflammatory reaction. In the present study, we demonstrated that ZEA induced the activation of NLRP3 inflammasome even pyroptotic cell death in rat Insulinoma Cell Line (INS-1). Meanwhile, according to the results of western blot and TEM, the level of autophagy was elevated by ZEA, which protected against the activation of NLRP3 inflammasome and inflammatory response caused by ZEA. Furthermore, we indicated that ZEA-induced NF-κB p65 activation contributed to the activation of the NLRP3 inflammasome, inflammatory response, and pyroptosis in INS-1 cells, which were indicated by western blot and immunofluorescence, and the activation of NF-κB p65 induced by ZEA was autophagy-dependent. This study demonstrates that ZEA induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China; Department of Teaching Affairs, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Limin Shi
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Kun Yao
- Department of Orthopedics, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University. No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Lijie Jiang
- Department of Internal Medicine, The Afliated Zhong Shan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Ningning Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Hongying Zhang
- Department of Pathology and Forensic Medicine, Dalian Medical University, 9 West Lvshun Southern Road, Dalian 116044, PR China
| | - Yan Wang
- Department of endocrinology, the Second Hospital of Chaoyang, No. 26, Chaoyang street of the twin towers, Chaoyang, 122000, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
22
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
23
|
Lu Z, Zhang C, Han C, An Q, Cheng Y, Chen Y, Meng R, Zhang Y, Su J. Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3459-3468. [PMID: 30813722 DOI: 10.1021/acs.jafc.9b00121] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride (PVC) plastics. Humans and animals are widely and continuously exposed to DEHP, especially with respect to diet, which is associated with reproductive diseases. Nevertheless, the effects and underlying mechanisms of DEHP exposure on oocytes in vivo remain ambiguous. In this study, we found that oral administration of DEHP (40 μg/kg body weight per day for 14 days) markedly reduced the maturation and fertilization of oocytes in vivo. In addition, DEHP caused oxidative stress, increased reactive oxygen species generation, promoted early apoptosis, and resulted in DNA damage in mouse oocytes. Moreover, DEHP exposure caused mitochondrial damage, reduced ATP content, down-regulated actin expression, and disturbed the spindle assembly and chromosome alignment in mouse oocytes. Furthermore, DEHP exposure remarkably impaired the localization and protein level of Juno, the sperm receptor on the membrane of oocytes. The levels of DNA methylation, H3K9me3, and H3K9ac were also altered in the DEHP-exposed mouse oocytes. Thus, our results indicated that DEHP exposure reduced the maturation and fertilization capabilities of mouse oocytes by affecting cytoskeletal dynamics, oxidative stress, early apoptosis, meiotic spindle morphology, mitochondria, ATP content, Juno expression, DNA damage, and epigenetic modifications in mouse oocytes.
Collapse
Affiliation(s)
- Zhenzhen Lu
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Chengtu Zhang
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Chengquan Han
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Quanli An
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yuyao Cheng
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yongzhong Chen
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Ru Meng
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Yong Zhang
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Jianmin Su
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| |
Collapse
|
24
|
Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem Toxicol 2019; 126:262-276. [PMID: 30825585 DOI: 10.1016/j.fct.2019.02.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Zearalenone (ZEA), a non-steroidal estrogen mycotoxin produced by several species of Fusarium fungi, can be metabolized into many other derivatives by microorganisms, plants, animals and humans. It can affect mammalian reproductive capability by impacting the synthesis and secretion of sex hormones, including testosterone, estradiol and progesterone. This review summarizes the mechanisms in which ZEA and its derivatives disturb the synthesis and secretion of sex steroid hormones. Because of its structural analogy to estrogen, ZEA and its derivatives can exert a variety of estrogen-like effects and engage in estrogen negative feedback regulation, which can result in mediating the production of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland. ZEA and its derivatives can ultimately reduce the number of Leydig cells and granulosa cells by inducing oxidative stress, endoplasmic reticulum (ER) stress, cell cycle arrest, cell apoptosis, and cell regeneration delay. Additionally, they can disrupt the mitochondrial structure and influence mitochondrial functions through overproduction of reactive oxygen species (ROS) and aberrant autophagy signaling ways. Finally, ZEA and its derivatives can disturb the expressions and activities of the related steroidogenic enzymes through cross talking between membrane and nuclear estrogen receptors.
Collapse
|
25
|
Chen F, Wen X, Lin P, Chen H, Wang A, Jin Y. HERP depletion inhibits zearalenone-induced apoptosis through autophagy activation in mouse ovarian granulosa cells. Toxicol Lett 2018; 301:1-10. [PMID: 30394307 DOI: 10.1016/j.toxlet.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
HERP is an endoplasmic reticulum (ER) membrane protein and is strongly induced by stress conditions. A recent study has indicated that HERP cooperates in apoptosis during zearalenone (ZEA) treatment. However, regulatory mechanisms and the role of HERP in ZEA-induced apoptosis remain elusive in ovarian granulosa cells. In this study, MTT and flow cytometry assays demonstrated that ZEA gradually decreased cell viability and increased apoptosis in granulosa cells in a dose-dependent manner. Western blot analysis showed that ZEA significantly activated autophagy by upregulating LC3-II. Chloroquine (CQ) significantly increased LC3-II and induced granulosa cell apoptosis. Moreover, Western blot analysis showed that ZEA inhibited the mTOR and ERK1/2 signaling pathways. Furthermore, we found that ZEA activated ER stress by upregulating the ER stress-related proteins GRP78, HERP and CHOP. 4-PBA significantly decreased GRP78, HERP, CHOP and LC3-II. In addition, knockdown of HERP (shHERP) significantly protected ovarian granulosa cells from apoptosis induced by ZEA. We found that HERP depletion activated autophagy and ERK1/2 signaling pathways, while it inhibited the mTOR and caspase-dependent mitochondrial signaling pathways. In summary, autophagy and ER stress cooperated in apoptosis induced by ZEA; HERP depletion inhibits ZEA-induced apoptosis of ovarian granulosa cells through autophagy activation and apoptotic pathway inhibition.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Xin Wen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Zhang RQ, Sun XF, Wu RY, Cheng SF, Zhang GL, Zhai QY, Liu XL, Zhao Y, Shen W, Li L. Zearalenone exposure elevated the expression of tumorigenesis genes in mouse ovarian granulosa cells. Toxicol Appl Pharmacol 2018; 356:191-203. [DOI: 10.1016/j.taap.2018.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 01/13/2023]
|
27
|
Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem Toxicol 2018; 119:24-30. [DOI: 10.1016/j.fct.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
28
|
Lan M, Han J, Pan MH, Wan X, Pan ZN, Sun SC. Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation. J Pineal Res 2018; 65:e12477. [PMID: 29453798 DOI: 10.1111/jpi.12477] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Deoxynivalenol (DON) is one of the most prevalent fusarium mycotoxins in feedstuff and food. DON causes detrimental effects on human and animal reproductive systems by inducing oxidative stress and apoptosis. However, melatonin is a multifunctional endogenous hormone that plays crucial roles in the development of animal germ cells and embryos as a robust deoxidizer. In this study, we explored the effects of melatonin on the DON exposure mouse oocytes. Our in vitro and in vivo results showed that DON adversely affected mouse oocyte maturation and early embryo cleavage, while melatonin administration ameliorated the toxic effects of DON. DON exposure disrupted the meiotic spindle formation and kinetochore-microtubule attachment, which induced aneuploidy in oocytes. This might be through DON effects on the acetylated tubulin level. Moreover, we found that DON exposure caused the alteration of DNA and histone methylation level, which might affect early embryo cleavage. The toxic effects of DON on oocytes might be through its induction of oxidative stress-mediated early apoptosis, while the treatment with melatonin significantly ameliorated these phenotypes in DON-exposed mouse oocytes. Collectively, our results indicated the protection effects of melatonin against defects induced by DON during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stress-mediated apoptosis. Oncotarget 2018; 8:34525-34533. [PMID: 28404941 PMCID: PMC5470988 DOI: 10.18632/oncotarget.15776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Citrinin is one of the mycotoxins and has been shown to have various toxic effects in animals and humans. Although previous study showed the toxic effects of citrinin on the female reproductive system, especially on oocyte maturation, however, the causes or mechanism of citrinin on oocyte quality is unclear. In present study we deeply investigated this topic. We found thatcitrinin toxin exposure inhibited mouse oocyte maturation and early embryo development. Further investigation showed that the actin distribution in oocytes and embryos was disrupted, and the reduced expression of actin nucleator ARP2 expression in the oocyte cortex further confirmed this. We also found that meiotic spindle morphology was abnormal after citrinin treatment. These results indicated that citrinin toxin exposure could disrupt cytoskeleton dynamics to affect oocyte maturation and early embryo development. We also examined the ROS level and early apoptosis marker Annexin signals, and the results showed that both levels increased, indicating that citrinin induced oxidative stress and further resulted in oocyte early apoptosis. Taken together, our results indicated that citrinin toxin exposure could reduce mouse oocyte maturation and early embryo development capability by affecting cytoskeletal dynamics, which may be due to the oxidative stress induced early apoptosis.
Collapse
|
30
|
Liu KH, Sun XF, Feng YZ, Cheng SF, Li B, Li YP, Shen W, Li L. The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis. Toxicol Appl Pharmacol 2017; 329:9-17. [PMID: 28552778 DOI: 10.1016/j.taap.2017.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by fusarium graminearum. It can cause abnormal reproductive function by acting as an environmental estrogen. Research has traditionally focused on acute and chronic injury on mammalian reproductive capacity after ZEA treatment. Little research has been done studying the effects of ZEA exposure on early oogenesis. In this study, we investigate the effects of ZEA exposure on meiotic entry, DNA double-strand breaks (DSBs), and primordial follicle assembly during murine early oogenesis. The results show that ZEA exposure significantly decreased the percentage of diplotene stage germ cells, and made more germ cells remain at zygotene or pachytene stages. Moreover, the mRNA expression level of meiosis-related genes was significantly reduced after ZEA treatment. ZEA exposure significantly increased DNA-DSBs at the diplotene stage. Meanwhile, DNA damage repair genes such as RAD51 and BRCA1 were activated. Furthermore, maternal exposure to ZEA significantly decreased the number of primordial follicles in newborn mouse ovaries. In conclusion, ZEA exposure impairs mouse female germ cell meiotic progression, DNA-DSBs, and primordial follicle assembly.
Collapse
Affiliation(s)
- Ke-Han Liu
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Ya-Peng Li
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. Zearalenone as an endocrine disruptor in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:141-149. [PMID: 27771507 DOI: 10.1016/j.etap.2016.10.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEA), a fungal mycotoxin, is present in a wide range of human foods. Many animal studies have found ZEA to possess a disruptive effect on the hormonal balance, mainly due to its similarity to naturally-occurring estrogens. With increasing consciousness of the adverse effects of endocrine disruptors on human health, it is becoming more important to monitor ZEA concentrations in food and identify its potential effects on human health. Based on a review of recent studies on animal models and molecular pathways in which ZEA is reported to have an influence on humans, we postulate that ZEA might act as an endocrine disruptor in humans in a similar way to animals. Moreover, its endocrine-disrupting effect might be also a causative factor in carcinogenesis. This review article summarizes the latest knowledge about the influence of ZEA on the human hormonal balance.
Collapse
Affiliation(s)
- Karolina Kowalska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Dominika Ewa Habrowska-Górczyńska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland.
| |
Collapse
|
32
|
Zhang Y, Han J, Zhu CC, Tang F, Cui XS, Kim NH, Sun SC. Exposure to HT-2 toxin causes oxidative stress induced apoptosis/autophagy in porcine oocytes. Sci Rep 2016; 6:33904. [PMID: 27658477 PMCID: PMC5034267 DOI: 10.1038/srep33904] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
T-2 toxin is a main type A trichothecene mycotoxin which is the most toxic trichothecence. T-2 toxin has posed various toxic effects on human and animals in vigorous cell proliferation tissues like lymphoid, hematopoietic and gastrointestinal tissues, while HT-2 toxin is the major metabolite which is deacetylated by T-2 toxin. In this study, we focused on the toxic effects of HT-2 on porcine oocyte maturation. We treated the porcine oocyte with HT-2 toxin in vitro, and we first found that HT-2 treatment inhibited porcine oocyte polar body extrusion and cumulus cell expansion. We observed the disrupted meiotic spindle morphology after treatment, which might be due to the reduced p-MAPK protein level. Actin distribution was also disturbed, indicating that HT-2 affects cytoskeleton of porcine oocytes. We next explored the causes for the failure of oocyte maturation after HT-2 treatment. We found that HT-2 treated oocytes showed the increased ROS level, which indicated that oxidative stress had occurred. We also detected autophagy as well as early apoptosis in the treatment oocytes. Due to the fact that oxidative stress could induced apoptosis, our results indicated that HT-2 toxin caused oxidative stress induced apoptosis and autophagy, which further affected porcine oocyte maturation.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Cheng Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|