1
|
Wu X, Zhao H, Huang X, Lu P, Zhang R, Guan Q, Yu C. The role and mechanism of quercetin in improving late-onset hypogonadism through network analysis and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04022-0. [PMID: 40090989 DOI: 10.1007/s00210-025-04022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The rising incidence of late-onset hypogonadism (LOH) profoundly diminishes the quality of life in men due to declining testosterone levels. Quercetin is an important active metabolite in various traditional botanical drugs that enhance male fertility, yet its mechanisms of action remain unclear. This study delves into the therapeutic potential and underlying mechanisms of quercetin in LOH management, proposing novel treatment strategies. An aging murine model was created and treated with quercetin starting at 12 weeks of age. Sperm parameters were evaluated, and serum and testicular testosterone and inflammatory cytokines were quantified via ELISA. Histological analyses of testicular tissue were performed. Network analysis and molecular docking studies predicted quercetin's therapeutic pathways in LOH. Key proteins involved in testosterone synthesis and testicular aging were verified using western blotting and immunofluorescence. Aged TM3 cells were treated with quercetin to corroborate the effects on testicular Leydig cells. In the murine model, the quercetin treatment group showed an increase in sperm average path velocity (VAP) by 1.21 ± 0.087-fold (p < 0.01), an increase in straight-line velocity (VCL) by 1.12 ± 0.18-fold (p < 0.01), a rise in serum testosterone levels by 0.27 ± 0.48-fold (p < 0.05), and an increase in testosterone levels in testicular tissue by 0.30 ± 0.20-fold (p < 0.05), while IL-1β levels decreased to 0.61 ± 0.13-fold (p < 0.01) compared to the aging group. Network analysis suggested quercetin's efficacy in LOH may be mediated through the AR and PI3K/AKT pathways. In quercetin-treated aged mice, a reduction in γH2AX and an increase in Ki67 expression were observed in testicular tissue, alongside upregulated expression of key testosterone synthesis proteins-steroidogenic acute regulatory (STAR) and scavenger receptor class B type 1 (SRB1), accompanied with enhanced AR expression and AKT1 phosphorylation. Similar results were confirmed in testicular Leydig cells. Compared to the group treated with bleomycin alone, the bleomycin plus quercetin treatment group showed a reduced positive area in β-gal staining, downregulation of the senescence-associated marker γH2AX, increased expression of the key testosterone synthesis protein SRB1, and elevated levels of expression of quercetin's potential target AR as well as phosphorylation of AKT1. Quercetin ameliorates the aging of testicular Leydig cells and promotes testosterone synthesis through modulation of the AR/PI3K/AKT signaling pathway, presenting a promising therapeutic approach for LOH.
Collapse
Affiliation(s)
- Xiaodong Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Xinshuang Huang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Runqi Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Fernández Zapata WF, Cardona Maya Y, Isaza Merino C, Cardona Maya WD. Effects of nanotubes on semen quality and fertility in humans: A systematic review of literature. Arch Ital Urol Androl 2024; 96:12192. [PMID: 38451248 DOI: 10.4081/aiua.2024.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In the medical field, it is increasingly common to observe the use of nanotubes, for example, in the administration of drugs. However, nanotubes raise concerns for male fertility due to potential effects on hormone levels and sperm quality observed in animal studies. In addition, animal exposure to multi-walled carbon nanotube models found alterations in hormone levels, sperm motility, and sperm count. Limited evidence in humans suggests no adverse effects, but further research is needed. This study aimed to perform a systematic review to assess the in vitro effects of nanotubes on semen and fertility in humans. METHODS We included all published in vitro studies about semen or sperm or male fertility and nanotubes in humans. A search was conducted in LILACS, PubMed, and SCOPUS as of May 2023. The risk of bias was assessed using the QUIN tool. RESULTS Four studies using nanotubes on human sperm were included, nanotubes exposure appears not to affect sperm viability; however, some alterations to motility, velocity and production of reactive oxygen species were reported. Limited evidence is provided because of the small quantity of publications. CONCLUSIONS Nanotubes appear to have no adverse effects on human sperm.
Collapse
Affiliation(s)
- William Felipe Fernández Zapata
- "SYMBIOSIS" Research Hotbed in Human Reproduction and Gestation, Faculty of Medicine, University of Antioquia, UdeA, Medellín; Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, University of Antioquia, Medellín.
| | - Yamile Cardona Maya
- Department of Basic Foundation, Pascual Bravo University Institution, Medellín.
| | - Cesar Isaza Merino
- Department of Mechanical Engineering, Faculty of Engineering, University of Antioquia, Medellín.
| | - Walter D Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, University of Antioquia, Medellín.
| |
Collapse
|
4
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
5
|
Yao Y, Tang M. Advances in endocrine toxicity of nanomaterials and mechanism in hormone secretion disorders. J Appl Toxicol 2021; 42:1098-1120. [PMID: 34935166 DOI: 10.1002/jat.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The size of nanoparticles is about 1-100 nm. People are exposed to nanoparticles in environmental pollutants from ancient times to the present. With the maturity of nanotechnology in the past two decades, the production of manufactured nanomaterials is rapidly increasing and they are used in a wide range of aerospace, medicine, food, and industrial applications. However, both natural and manufactured nanomaterials have been proved to pose a threat to diverse organs and systems. The endocrine system is critical to maintaining homeostasis. Endocrine disorders are associated with many diseases, including cancer, reduced fertility, and metabolic diseases. Therefore, we review the literatures dealing with the endocrine toxicity of nanomaterial. This review provides an exhaustive description of toxic effects of several common nanomaterials in the endocrine system; more involved are reproductive endocrinology. Then physicochemical factors that determine the endocrine toxicity of nanomaterials are discussed. Furthermore, oxidative stress, changes in steroid production and metabolic enzymes, organelle disruption, and alterations in signal pathways are introduced as potential mechanisms that may cause changes in hormone levels. Finally, we suggest that a risk assessment of endocrine toxicity based on standard procedures and consideration of endocrine disrupting effects of nanomaterials in the field and its environmental and population effects could be future research directions for endocrine toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Awogbindin IO, Maduako IC, Adedara IA, Owumi SE, Ajeleti AO, Owoeye O, Patlolla AK, Tchounwou PB, Farombi EO. Kolaviron ameliorates hepatic and renal dysfunction associated with multiwalled carbon nanotubes in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:67-76. [PMID: 32856799 DOI: 10.1002/tox.23011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The increase in the exposure to carbon nanotubes (CNTs) and their incorporation into industrial, electronic, and biomedical products have required several scientific investigations into the toxicity associated with CNTs. Studies have shown that the metabolism and clearance of multiwalled CNTs (MWCNTs) from the body involve biotransformation in the liver and its excretion via the kidney. Since oxidative stress and inflammation underlines the toxicity of MWCNT, we investigated the ameliorative effect of kolaviron (KV), a natural antioxidant and anti-inflammatory agent, on hepatorenal damage in rats. Exposure to MWCNTs for 15 days significantly increased serum activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase thereby suggesting hepatic dysfunction. Kidney function, which was monitored by urea and creatinine levels, was also impaired by MWCNTs. Additionally, MWCNTs markedly increased myeloperoxidase activity, nitric oxide level, reactive oxygen and nitrogen species, and tumor necrosis factor level in both tissues. However, KV in a dose-dependent manner markedly attenuated MWCNT-induced markers of hepatorenal function in the serum and MWCNT-associated inflammation in the liver and kidney. Also, MWCNTs elicited significant inhibition of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities. There was a significant diminution in glutathione level (GSH) and enhanced production of malondialdehyde (MDA) in MWCNTs-exposed rats. KV treatment was able to significantly increase the antioxidant enzymes and enhance the GSH level with a subsequent reduction in the MDA level. Taken together, KV elicited ameliorative effects against hepatorenal damage via its anti-inflammatory and antioxidant properties. Thus, KV could be an important intervention strategy for the hepatorenal damage associated with MWCNTs exposure.
Collapse
Affiliation(s)
- Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna C Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola O Ajeleti
- Department of Anatomy, College of Medicine, Bowen University, Iwo, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Paul B Tchounwou
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Adedara IA, Awogbindin IO, Owoeye O, Maduako IC, Ajeleti AO, Owumi SE, Patlolla AK, Farombi EO. Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats. Psychopharmacology (Berl) 2020; 237:1027-1040. [PMID: 31897575 DOI: 10.1007/s00213-019-05432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochemical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna C Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola O Ajeleti
- Department of Anatomy, College of Medicine, Bowen University, Iwo, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
8
|
Zhang X, Yue Z, Zhang H, Liu L, Zhou X. Repeated administrations of Mn 3O 4 nanoparticles cause testis damage and fertility decrease through PPAR-signaling pathway. Nanotoxicology 2020; 14:326-340. [PMID: 31909642 DOI: 10.1080/17435390.2019.1695976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Potential health hazards of nanomaterials on male reproductive system have received raising concerns. Even though Mn3O4 nanoparticles (Mn3O4-NPs) is highly effective in clinical diagnostic and therapeutic applications of human disease, its potential toxic effect on the male reproductive system has not been reported. In this study, the testis damage and fertility decrease of male rats were conducted to testify the experimental reproductive injury induced by Mn3O4-NPs. After repeated tail vein injection with 10 mg/kg/week Mn3O4-NPs for 0, 60 and 120 days, Mn3O4-NPs accumulated in the testes resulted in oxidative stress and disorder of normal serum sex hormones. Experiments in vivo and in vitro indicated that mitochondria-mediated cell apoptosis were triggered via oxidative stress, demonstrated by the upregulation of malondialdehyde (MDA) and the depolarization of mitochondrial membrane potential. Notably, Mn3O4-NPs significantly resulted in a reduction of the quantity/quality of sperm and finally caused astonishing fertility decrease. Our preliminary result implied that the application of Mn3O4-NPs could be a double-edged sword and careful consideration should be given to the clinical uses.
Collapse
Affiliation(s)
- Xiao Zhang
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China
| | - Zongkai Yue
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Haijun Zhang
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Xiaomeng Zhou
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China.,Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| |
Collapse
|
9
|
Choi YJ, Gurunathan S, Kim D, Jang HS, Park WJ, Cho SG, Park C, Song H, Seo HG, Kim JH. Rapamycin ameliorates chitosan nanoparticle-induced developmental defects of preimplantation embryos in mice. Oncotarget 2018; 7:74658-74677. [PMID: 27463007 PMCID: PMC5342693 DOI: 10.18632/oncotarget.10813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022] Open
Abstract
Chitosan nanoparticles (CSNPs) are used as drug or gene delivery vehicles. However, a detailed understanding of the effects of CSNPs on embryonic development remains obscure. Here, we show that CSNPs can be internalized into mouse blastocysts, such as the zona pellucida, the perivitelline space, and the cytoplasm. Consequently, CSNPs-induced endoplasmic reticulum (ER) stress increases both of Bip/Grp78, Chop, Atf4, Perk, and Ire1a mRNAs expression levels, and reactive oxygen species. Moreover, CSNPs show double- and multi-membraned autophagic vesicles, and lead to cell death of blastocoels. Conversely, treatment with rapamycin, which plays an important role as a central regulator of cellular proliferation and stress responses, decreased CSNPs-induced mitochondrial Ca+2 overloading, apoptosis, oxidative stress, ER stress, and autophagy. In vivo studies demonstrated that CSNPs injection has significant toxic effect on primordial and developing follicles. Notably, rapamycin rescued oxidative stress-induced embryonic defects via modulating gene expression of sirtuin and mammalian target of rapamycin. Interestingly, CSNPs treatment alters epigenetic reprogramming in mouse embryos. Overall, these observations suggest that rapamycin treatment could ameliorate CSNPs-induced developmental defects in preimplantation embryos. The data from this study would facilitate to understand the toxicity of these CSNPs, and enable the engineering of safer nanomaterials for therapeutic applications.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - DaSom Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyung Seok Jang
- Department of Pathology, Hanyang University Medical Center, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Woo-Jin Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
11
|
Patlolla AK, Patra PK, Flountan M, Tchounwou PB. Cytogenetic evaluation of functionalized single-walled carbon nanotube in mice bone marrow cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1091-102. [PMID: 25689286 PMCID: PMC4539296 DOI: 10.1002/tox.22118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 05/11/2023]
Abstract
With their unique structure and physicochemical properties, single\-walled carbon nanotubes (SWCNTs) have many potential new applications in medicine and industry. However, there is lack of detailed information concerning their impact on human health and the environment. The aim of this study was to assess the effects, after intraperitoneal injection of functionalized SWCNTs (f-SWCNT) on the induction of reactive oxygen species (ROS), frequency of structural chromosomal aberrations (SCA), frequency of micronuclei induction, mitotic index, and DNA damage in Swiss-Webster mice. Three doses of f-SWCNTs (0.25, 0.5, and 0.75 mg/kg) and two controls (negative and positive) were administered to mice, once a day for 5 days. Bone marrow and peripheral blood samples were collected 24 h after the last treatment following standard protocols. F-SWCNT exposure significantly enhanced ROS, increased (p < 0.05) the number of SCA and the frequency of micronucleated cells, increased DNA damage, and decreased the mitotic index in exposed groups compared to negative control. The scientific findings reported here suggest that purified f-SWCNT have the potential to induce oxidative stress mediated genotoxicity in Swiss-Webster mice at higher level of exposure. Further characterization of their systemic toxicity, genotoxicity, and carcinogenicity is also essential. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1091-1102, 2016.
Collapse
Affiliation(s)
- Anita K. Patlolla
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
- NIH-RCMI Center for Environmental Health, College of Science
Engineering and Technology, Jackson State University, Jackson, MS, USA
- Author to whom correspondence should be addressed;
; Tel.: +1-601-979-0210; Fax:
+1-601-979-5853
| | - Prabir K. Patra
- Department of Biomedical Engineering, School of Engineering,
University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604
- Department of Mechanical Engineering, School of Engineering,
University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604
| | - Moyesha Flountan
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
| | - Paul B. Tchounwou
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
- NIH-RCMI Center for Environmental Health, College of Science
Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|