1
|
Li X, Wang W, Wang X, Wang H. Differential immunotoxicity effects of triclosan and triclocarban on larval zebrafish based on RNA-Seq and bioinformatics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106665. [PMID: 37611455 DOI: 10.1016/j.aquatox.2023.106665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Herein, we demonstrated that sublethal-dose exposure to triclosan (TCS) and triclocarban (TCC) triggered larval zebrafish immunotoxicity. Acute exposure to TCS induced significant increases in larval neutrophils and macrophages and a prominent decrease in thymic T cells. In contrast, three kinds of cells (neutrophils, macrophages, and thymic T cells) were significantly reduced under TCC exposure, suggesting that both TCS and TCC suppress thymus development and mature T-cell differentiation. TCC was confirmed to have more severe immunotoxicity than TCS. Using Illumina RNA-Seq, 581 and 738 differentially expressed genes (DEGs) were identified in the TCS and TCC treatments, respectively. GO function and KEGG pathway enrichment analyses revealed that the DEGs were not identical in terms of biological processes, cellular components and molecular functions, but were primarily involved in immune response. KEGG analysis showed that approximately 47% and 11% of DEGs were mainly enriched in the immune system of the TCC and TCS treatments, respectively. Protein-protein interaction (PPI) network analysis confirmed that the hub genes enriched in the immune-related pathways differed between TCS and TCC exposure. The hub genes were fynb, mapk12b, scarb1, pik3r2, prkg3, srfa, arhgef2, cldn15la, and cldn15lb in the TCS treatment, and plg, serping1, masp2, fgg, vtnb, mmp9, serpine1, il1b, sb:cb37 and stat3 in the TCC treatment. Molecular docking simulation demonstrated that both TCS and TCC were stably docked with their target hub genes, and that their target molecules for inducing immunotoxicity were different. The differential target molecules and action pathways induced by TCS and TCC exposure provide us with diagnostic targets and toxicological endpoints.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Wang H, Li X, Wang W, Xu J, Ai W, Huang H, Wang X. Immunotoxicity induced by triclocarban exposure in zebrafish triggering the risk of pancreatic cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121458. [PMID: 36934961 DOI: 10.1016/j.envpol.2023.121458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Owing to frequent application as a broad-spectrum bactericide, triclocarban (TCC) exposure has raised great concern for aquatic organisms and human health. Herein, based on transcriptome sequencing data analysis of zebrafish, we confirmed that TCC induced oxidative stress and dysimmunity through transcriptional regulation of the related genes. With aid of the Cancer Genome Atlas (TCGA) assembler database, 52 common differentially expressed genes, whose functions were related to immunity, were screened out by virtue of the meta-analysis of pancreatic cancer sample data and differential transcription profiles from TCC-exposed larvae. Acute TCC exposure affected formation of the innate immune cells, delayed mature thymic T-cell development, reduced immunoglobulin M (IgM) levels and promoted excessive release of the pro-inflammatory factors (IL-6, IL-1β and tnfα). Under TCC exposure, the expressions of the genes associated with immune cell abundance in pancreatic cancer were significantly down-regulated, while the levels of ROS were prominently increased in concomitant with suppressed antioxidant activity. Moreover, a series of marker genes (pi3k, nrf2, keap1, ho-1 and nqo1) in the PI3K/Nrf2 antioxidant-stress pathway were abnormally expressed under TCC exposure. Interestingly, vitamin C decreased the malformation and increased the survival rate of 120-hpf larvae and effectively alleviated TCC-induced oxidative stress and immune responses. Overall, TCC exposure induced immunotoxicity and increased the risk of pancreatic cancer by inhibiting the antioxidant capacity of the PI3K/Nrf2 signal pathway. These observations enrich our in-depth understanding of the effects of TCC on early embryonic-larval development and immune damage in zebrafish.
Collapse
Affiliation(s)
- Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaqi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
3
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Li S, Zhang Y, Xue H, Zhang Q, Chen N, Wan J, Sun L, Chen Q, Zong Y, Zhuang F, Gu P, Zhang A, Cui F, Tu Y. Integrative effects based on behavior, physiology and gene expression of tritiated water on zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112770. [PMID: 34536793 DOI: 10.1016/j.ecoenv.2021.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tritium is a water-soluble hydrogen isotope that releases beta rays during decay. In nature, tritium primarily exists as tritiated water (HTO), and its main source is nuclear power/processing plants. In recent decades, with the development of nuclear power industry, it is necessary to evaluate the impact of tritium on organisms. In this study, fertilized zebrafish embryos are treated with different HTO concentrations (3.7 × 103 Bq/ml, 3.7 × 104 Bq/ml, 3.7 × 105 Bq/ml). After treatment with HTO, the zebrafish embryos developed without evident morphological changes. Nevertheless, the heart rate increased and locomotor activity decreased significantly. In addition, RNA-sequencing shows that HTO can affect gene expressions. The differentially expressed genes are enriched through many physiological processes and intracellular signaling pathways, including cardiac, cardiovascular, and nervous system development and the metabolism of xenobiotics by cytochrome P450. Moreover, the concentrations of thyroid hormones in the zebrafish decrease and the expression of thyroid hormone-related genes is disordered after HTO treatment. Our results suggest that exposure to HTO may affect the physiology and behaviors of zebrafish through physiological processes and intracellular signaling pathways and provide a theoretical basis for ecological risk assessment of tritium.
Collapse
Affiliation(s)
- Shengri Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Yefeng Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; School of Public Health, Soochow University, Suzhou 215123, PR China
| | - Huiyuan Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qixuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Ying Zong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghui Zhuang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Anqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Zhao XL, Li P, Zhang SQ, He SW, Xing SY, Cao ZH, Lu R, Li ZH. Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117612. [PMID: 34146995 DOI: 10.1016/j.envpol.2021.117612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are emerging pollutants in our environment. These treatments have been widely used for their low cost, convenient use, and prominent effects. However, the prolonged or excessive use of such drugs can cause toxicity in aquatic organisms. These effects include genotoxicity, metabolic alteration, delayed development and decreased immunity, which carry further risks for ecological systems. In the present study, juvenile common carp (Cyprinus carpio) were exposed to norfloxacin (NOR) for 42 days, with NOR concentrations ranging from 100 ng/L to 1 mg/L, to assess the effects of environmental concentrations of antibiotics, to investigate the effects of NOR on intestinal morphology, enzymatic activity, and transcriptomic levels of RNA in fish, as well as a risk assessment on human health was carried out. The results demonstrated that oxidative stress was induced, the barrier function of the intestine was damaged, and changes occurred in the expression of immune-related genes in fish chronically exposed to antibiotics. Moreover, NOR could affect the regulation of the NF-κB signaling pathway. Thus, environmental concentrations of antibiotics can influence the intestinal health of fish and potentially posing health risks to humans.
Collapse
Affiliation(s)
- Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Si-Qi Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Rong Lu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
6
|
Jijie R, Mihalache G, Balmus IM, Strungaru SA, Baltag ES, Ciobica A, Nicoara M, Faggio C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals (Basel) 2021; 14:ph14060578. [PMID: 34204339 PMCID: PMC8234794 DOI: 10.3390/ph14060578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The overuse of antibiotics combined with the limitation of wastewater facilities has resulted in drug residue accumulation in the natural environment. Thus, in recent years, the presence of antibiotic residues in the environment has raised concerns over the potential harmful effects on ecosystems and human health. The in vivo studies represent an essential step to study the potential impact induced by pharmaceutical exposure. Due to the limitations of traditional vertebrate model systems, zebrafish (Danio rerio) has recently emerged as a promising animal model to study the toxic effects of drugs and their therapeutic efficacy. The present review summarizes the recent advances made on the toxicity of seven representative classes of antibiotics, namely aminoglycosides, β-lactams, macrolides, quinolones, sulfonamides, tetracyclines and polyether antibiotics, in zebrafish, as well as the combined effects of antibiotic mixtures, to date. Despite a significant amount of the literature describing the impact of single antibiotic exposure, little information exists on the effects of antibiotic mixtures using zebrafish as an animal model. Most of the research papers on this topic have focused on antibiotic toxicity in zebrafish across different developmental stages rather than on their efficacy assessment.
Collapse
Affiliation(s)
- Roxana Jijie
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
- Correspondence: (R.J.); (C.F.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania;
- Department of Horticultural Technologies, “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, 700440 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Stefan-Adrian Strungaru
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Emanuel Stefan Baltag
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres, 31 98166 S. Agata-Messina, Italy
- Correspondence: (R.J.); (C.F.)
| |
Collapse
|
7
|
Qiu W, Liu X, Yang F, Li R, Xiong Y, Fu C, Li G, Liu S, Zheng C. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137062. [PMID: 32036144 DOI: 10.1016/j.scitotenv.2020.137062] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 05/24/2023]
Abstract
In China, antibiotics are commonly used for human and veterinary medicine, and they are present in various environmental media. Thus, the toxic effects of antibiotics on organisms have attracted the attention of society and scientists alike. In this study, zebrafish embryos were used to test the single and joint toxicity of four antibiotics, sulfamonomethoxine (SMM), cefotaxime sodium (CFT), tetracycline (TC), enrofloxacin (ENR), and their combinations, combining the results of experimental and omics techniques. Following exposure to antibiotics for 120 h, the body lengths of zebrafish larvae in all 100 μg/L antibiotic groups were significantly shortened, and the reactive oxygen species (ROS) content in the 100 μg/L Mix group was significantly increased. Transcriptome sequencing (RNA-seq) showed that the mRNA level of numerous genes was significantly changed in the five antibiotic treatment groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed a significant enrichment of the steroid biosynthesis and other metabolism pathways. Hub gene analysis highlighted dhcr24, acat1, aldh1a2, aldh8a1, suclg2, hadh, and hsdl2 as the key genes, and hub gene expression changes because of the antibiotic treatment suggested that the metabolic system of the zebrafish larvae was severely disrupted by the interaction with other genes. In conclusion, single or joint exposure to different antibiotics at environmental concentrations affected the early development and metabolic system of zebrafish larvae, and our results provide fundamental evidence for future studies of antibiotic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xinjie Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feng Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongzhen Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Caixia Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Guanrong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Limbu SM, Zhou L, Sun SX, Zhang ML, Du ZY. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. ENVIRONMENT INTERNATIONAL 2018; 115:205-219. [PMID: 29604537 DOI: 10.1016/j.envint.2018.03.034] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/06/2018] [Accepted: 03/23/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Antibiotics used globally to treat human and animal diseases exist ubiquitously in the environment at low doses because of misuse, overdose and poor absorption after ingestion, coupled with their high-water solubility and degradation resistance. However, the systemic chronic effects of exposure to low environmental concentrations of antibiotics (LECAs) and legal aquaculture doses of antibiotics (LADAs) in fish and their human health risk are currently unknown. OBJECTIVE To investigate the in vivo chronic effects of exposure to LECAs and LADAs using oxytetracycline (OTC) and sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus) and their human health risk. METHODS Twenty O. niloticus weighing 27.73 ± 0.81 g were exposed to water containing LECAs (OTC at 420 ng/L and SMZ at 260 ng/L) and diets supplemented with LADAs (OTC 80 mg/kg/day and SMZ 100 mg/kg/day) for twelve weeks. General physiological functions, metabolic activities, intestinal and hepatic health were systemically evaluated. The possible human health risks of the consumption of the experimental Nile tilapia fillets in adults and children were assessed by using risk quotient. RESULTS After exposure, we observed retarded growth performance accompanied by reduced nutrients digestibility, feed efficiency, organ indices, and lipid body composition in treated fish. Antibiotics distorted intestinal morphological features subsequently induced microbiota dysbiosis and suppressed intestinal tight junction proteins. Exposure of fish to LECAs and LADAs induced oxidative stress, suppressed innate immunity, stimulated inflammatory and detoxification responses, concomitantly inhibited antioxidant capacity and caused lipid peroxidation in intestine and liver organs. Both LECAs and LADAs enhanced gluconeogenesis, inhibited lipogenesis and fatty acid beta oxidation in intestine and liver organs. The exposure of fish to LECAs and LADAs induced anaerobic glycolytic pathway and affected intestinal fat catabolism in intestine while halted aerobic glycolysis, increased hepatic fat catabolism, and induced DNA damage in liver. The hazard risk quotient in children for fish treated with OTCD was >1 indicating human health risk. CONCLUSION Overall, both LECAs and LADAs impair general physiological functions, nutritional metabolism, and compromise fish immune system. Consumption of fish fed with legal OTC provokes health risk in children. Global stringent prohibition policy for use of antibiotics in aquaculture production and strategies to limit their release into the environment are urgently required to protect human health.
Collapse
Affiliation(s)
- Samwel M Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China; Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Li Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Sheng-Xiang Sun
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
9
|
Liu L, Wu W, Zhang J, Lv P, Xu L, Yan Y. Progress of research on the toxicology of antibiotic pollution in aquatic organisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang X, Ma Y, Liu J, Yin X, Zhang Z, Wang C, Li Y, Wang H. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:160-170. [PMID: 28342328 DOI: 10.1016/j.ecoenv.2017.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/03/2023]
Abstract
So far, few data are available on the reproductive toxicological assessment of β-diketone antibiotics (DKAs), a class of ubiquitous pseudo-persistent pollutant, in zebrafish (Danio rerio). Herein, we reported the reproductive effects of DKAs by means of transcriptome analysis (F1-zebrafish), changes in a series of reproductive indices (F0-zebrafish) and histopathological observations. A total of 1170, 983 and 1399 genes were found to be differentially expressed when compared control vs. 6.25mg/L, control vs. 12.5mg/L and 6.25 vs. 12.5mg/L DKA-exposure treatments, respectively. Among three comparison groups, 670, 569 and 821 genes were respectively assigned for GO analyses based on matches with sequences of known functions. In 149 KEGG-noted metabolic pathways, the preferential one was the MAPK (mitogen-activated protein kinase) signaling pathway, followed by oxidative phosphorylation, neuroactive ligand-receptor interaction and so on. By qPCR verification, 6 genes (c6ast4, igfbp1b, mrpl42, tnnc2, emc4 and ddit4) showed consistent gene expression with those identified by transcriptome sequencing. Due to DKA-exposure, the concentrations of plasma estradiol and testosterone, and the gonado-somatic index were significantly dose-dependently declined. Also, DKA-exposure led to declining in zebrafish reproductive capacity, reflecting in fertilization, hatchability and egg production. Histopathological observations demonstrated that zebrafish ovary and testis suffered serious damage after DKA-exposure. The 4-oxo-TEMP signals increased obviously with increasing DKA-exposed concentrations, implying disruption of balance between generation and clearance of 1O2. In summary, DKAs not only produce reproductive toxicological effects on F0-zebrafish, but also result in adverse consequences for growth and development of F1-zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Ma
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Yin
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiheng Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Caihong Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Li
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Ding L, Zang L, Zhang Y, Zhang Y, Wang X, Ai W, Ding N, Wang H. Joint toxicity of fluoroquinolone and tetracycline antibiotics to zebrafish ( Danio rerio) based on biochemical biomarkers and histopathological observation. J Toxicol Sci 2017; 42:267-280. [DOI: 10.2131/jts.42.267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lihe Ding
- School of Physical Education and Sport Sciences, Wenzhou Medical University, China
| | - Luxiu Zang
- College of Life Sciences, Wenzhou Medical University, China
| | - Yuna Zhang
- College of Life Sciences, Wenzhou Medical University, China
| | - Yuhuan Zhang
- College of Life Sciences, Wenzhou Medical University, China
| | - Xuedong Wang
- College of Life Sciences, Wenzhou Medical University, China
| | - Weiming Ai
- College of Life Sciences, Wenzhou Medical University, China
| | - Nani Ding
- College of Life Sciences, Wenzhou Medical University, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, China
| |
Collapse
|
12
|
Li F, Wang H, Liu J, Lin J, Zeng A, Ai W, Wang X, Dahlgren RA, Wang H. Immunotoxicity of β-Diketone Antibiotic Mixtures to Zebrafish (Danio rerio) by Transcriptome Analysis. PLoS One 2016; 11:e0152530. [PMID: 27046191 PMCID: PMC4821563 DOI: 10.1371/journal.pone.0152530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Fluoroquinolones and tetracyclines are known as β-diketone antibiotics (DKAs) because of bearing a diketone group in their molecular structure. DKAs are the most widely used antibiotics to prevent generation of disease in humans and animals and to suppress bacterial growth in aquaculture. In recent years, overuse of DKAs has caused serious environmental risk due to their pseudo-persistence in the environment, even though their half-lives are not long. So far, no reports were concerned with the joint immunotoxicity of DKAs. Herein, we reported on the immunotoxicity of DKAs on zebrafish after a 3-month DKAs exposure using transcriptomic techniques. According to transcriptome sequencing, 10 differentially expressed genes were screened out among the genes related to KEGG pathways with high enrichment. The identified 7 genes showed to be consistent between RNA-seq and qRT-PCR. Due to DKAs exposure, the content or activity for a series of immune-related biomarkers (Complement 3, lysozyme, IgM and AKP) showed the inconsistent changing trends as compared with the control group. Histopathological observations showed that the number of goblet cells increased sharply, the columnar epithelial cells swelled, the nucleus became slender in intestinal villi, and numerous brown metachromatic granules occurred in spleens of DKAs-exposed groups. Overall, both detection of biomarkers and histopathological observation corroborated that chronic DKAs exposure could result in abnormal expression of immune genes and enzymes, and variable levels of damage to immune-related organs. These complex effects of DKAs may lead to zebrafish dysfunction and occurrence of diseases related to the immune system.
Collapse
Affiliation(s)
- Fanghui Li
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Jinfeng Liu
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiebo Lin
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aibing Zeng
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiming Ai
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- * E-mail: (HW); (XW)
| | - Randy A. Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Huili Wang
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail: (HW); (XW)
| |
Collapse
|