1
|
Zhao S, Li H, Luo W, Hu Z, Wang Y, Liu T, Zhang Y, Dai R. WHOLE TRANSCRIPTION ANALYSIS IDENTIFIED THE REGULATION OF HYPOXIA-INDUCIBLE FACTORS IN MONOCYTES WITH IMMUNE SUPPRESSION: IMPLICATIONS FOR CLINICAL OUTCOMES. Shock 2025; 63:541-551. [PMID: 39405478 PMCID: PMC11939089 DOI: 10.1097/shk.0000000000002479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 03/21/2025]
Abstract
ABSTRACT Aims: Sepsis progression is marked by a complex immune response, where the involvement of hypoxia-inducible factors (HIFs) plays an uncertain role. The study aims to elucidate the involvement of HIF-1α in monocyte function during sepsis and its potential as a prognostic indicator. Methods and Results: Transcriptomic data from healthy individuals and septic patients in datasets GSE54514, GSE167363, and GSE46955 were analyzed. Additionally, human monocytes were employed to elucidate how HIF regulates immune responses in the context of sepsis. Septic nonsurvivors exhibited sustained upregulation of HIF-1α expression alongside compromised inflammatory response and antigen presentation, with downregulation of NF-κB and HLADRB1 genes associated with poor sepsis prognosis. Conversely, septic survivors displayed an increased proportion of classical monocytes and enhanced inflammation and expression of antigen presentation-related genes. During the recovery phase of sepsis, monocytes continued to demonstrate elevated HIF-1α expression. In cultured THP1 cells and septic CD14 + monocytes, HIF hindered inflammatory responses and antigen presentation, while also suppressing the proportion of classical monocytes after LPS stimulation. Mechanistically, HIF significantly attenuated LPS-induced immune responses in monocytes by inhibiting the phosphorylation of IKK. Conclusions: HIF in monocytes acts as a suppressor of immune-inflammatory responses and antigen presentation, and may serve as a negative molecular marker for sepsis development.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Wei Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Zhaolan Hu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Tao Liu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - RuPing Dai
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
3
|
Chen J, Zhou L, Li X, Wu X, Li Y, Si L, Deng Y. Protective effect of zerumbone on sepsis-induced acute lung injury through anti-inflammatory and antioxidative activity via NF-κB pathway inhibition and HO-1 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2241-2255. [PMID: 37812239 DOI: 10.1007/s00210-023-02706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Sepsis is a systemic illness for which there are no effective preventive or therapeutic therapies. Zerumbone, a natural molecule, has anti-oxidative and anti-inflammatory properties that may help to prevent sepsis. In the present study, we have assessed the protective effect of zerumbone against sepsis-induced acute lung injury (ALI) and its underlying mechanisms. During the experiment, mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups that are pre-treated with zerumbone at different concentrations. We found that zerumbone greatly decreased the sepsis-induced ALI using histological investigations. Also, zerumbone treatment reduced the sepsis-induced inflammatory cytokine concentrations as well as the number of infiltrating inflammatory cells in BALF compared to non-treated sepsis animals. The zerumbone-pretreated sepsis groups had reduced pulmonary myeloperoxidase (MPO) activity than the sepsis groups. Moreover, the mechanism underlying the protective action of zerumbone on sepsis is accomplished by the activation of antioxidant genes such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD), and heme oxygenase 1 (HO-1). The obtained results revealed that zerumbone inhibited the sepsis-induced ALI through its anti-inflammatory and antioxidative activity via inhibition of the NF-κB pathway and activation of HO-1 pathway. Our findings demonstrate that zerumbone pretreatment suppresses sepsis-induced ALI via antioxidative activities and anti-inflammatory, implying that zerumbone could be a viable preventive agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jianjun Chen
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Liangliang Zhou
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xinxin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xufeng Wu
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yingbin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yijun Deng
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China.
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China.
| |
Collapse
|
4
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Lim EY, Lee SY, Shin HS, Kim GD. Reactive Oxygen Species and Strategies for Antioxidant Intervention in Acute Respiratory Distress Syndrome. Antioxidants (Basel) 2023; 12:2016. [PMID: 38001869 PMCID: PMC10669909 DOI: 10.3390/antiox12112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition characterized by the sudden onset of respiratory failure, pulmonary edema, dysfunction of endothelial and epithelial barriers, and the activation of inflammatory cascades. Despite the increasing number of deaths attributed to ARDS, a comprehensive therapeutic approach for managing patients with ARDS remains elusive. To elucidate the pathological mechanisms underlying ARDS, numerous studies have employed various preclinical models, often utilizing lipopolysaccharide as the ARDS inducer. Accumulating evidence emphasizes the pivotal role of reactive oxygen species (ROS) in the pathophysiology of ARDS. Both preclinical and clinical investigations have asserted the potential of antioxidants in ameliorating ARDS. This review focuses on various sources of ROS, including NADPH oxidase, uncoupled endothelial nitric oxide synthase, cytochrome P450, and xanthine oxidase, and provides a comprehensive overview of their roles in ARDS. Additionally, we discuss the potential of using antioxidants as a strategy for treating ARDS.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| |
Collapse
|
6
|
Miao RF, Tu J. LncRNA CDKN2B-AS1 interacts with LIN28B to exacerbate sepsis-induced acute lung injury by inducing HIF-1α/NLRP3-mediated pyroptosis. Kaohsiung J Med Sci 2023; 39:883-895. [PMID: 37265187 DOI: 10.1002/kjm2.12697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a life-threatening condition in intensive care units with high mortality. LncRNAs have been confirmed to participate in the underlying pathogenesis of septic ALI. This study investigated the biological functions of lncRNA CDKN2B-AS1 in septic ALI and its potential mechanism.BEAS-2B cells were challenged with lipopolysaccharide (LPS) and mice were subjected to caecal ligation and puncture (CLP) to induce septic ALI in vitro and in vivo. The expression levels of CDKN2B-AS1, LIN28B, HIF-1α, and pyroptosis-related molecules were assessed by qRT-PCR or Western blotting. The production of IL-1β and IL-18 was detected by ELISA. BEAS-2B cell pyroptosis was examined by flow cytometry. The interaction between LIN28B and CDKN2B-AS1/HIF-1α was validated by RIP and RNA pull-down assays. Colocalization of CDKN2B-AS1 and LIN28B was observed by FISH. ALI was determined by HE staining, the lung wet-to-dry (W/D) weight ratio, inflammatory cell numbers, and total protein concentration in bronchoalveolar lavage fluid (BALF). Caspase-1 expression in the lung tissues was examined by immunohistochemical staining.CDKN2B-AS1 was upregulated in BEAS-2B cells after LPS stimulation. CDKN2B-AS1 knockdown inhibited pyroptosis in LPS-exposed BEAS-2B cells in vitro and the lung tissues of septic mice in vivo. Mechanistically, CDKN2B-AS1 interacted with LIN28B to enhance HIF-1α stability. Rescue experiments showed that HIF-1α overexpression counteracted the inhibitory effect of sh-CDKN2B-AS1 on LPS-induced pyroptosis. CDKN2B-AS1 bound to LIN28B to trigger NLRP3-mediated pyroptosis by stabilizing HIF-1α, which promoted sepsis-induced ALI. CDKN2B-AS1 might be a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Run-Feng Miao
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Jing Tu
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Huang H, Wang J, Hussain SA, Gangireddygari VSR, Fan Y. Gossypin exert lipopolysaccharide induced lung inflammation via alteration of Nrf2/HO-1 and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148149 DOI: 10.1002/tox.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Acute Lung Injury (ALI) is a critical medical condition that induces the injury into the lung tissue, resulting in decreased the oxygen levels in the circulation and finally causes the respiratory failure. In this study, we try to made effort for scrutinized the preventive effect of gossypin against lipopolysaccharide (LPS) induced lung inflammation and explore the underlying mechanism. LPS (7.5 mg/kg) was used for induction the lung inflammation in the rats and rats were received the oral administration of gossypin (5, 10 and 15 mg/kg). The wet to dry weight lung ratio and lung index were estimated. The bronchoalveolar lavage fluid (BALF) were collected to determination the inflammatory cells, total protein, macrophages and neutrophils. ELISA kits were used for the estimation of antioxidant, inflammatory cytokines, inflammatory parameters, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) parameters. Finally, we used the lung tissue for scrutinize the alteration in the lung histopathology. Gossypin treatment significantly (p < .001) reduced the W/D ratio of lung tissue and lung index. Gossypin significantly (p < .001) decreased the total cells, neutrophils, macrophages and total protein in BALF. It is also altered the level of inflammatory cytokines, antioxidant and inflammatory parameters, respectively. Gossypin improved the level of Nrf2 and HO-1 at dose dependent manner. Gossypin treatment remarkably enhance the ALI severity via balancing the structural integrity of lung tissue, decrease the thickness of the alveolar wall, decline the pulmonary interstitial edema, and number of inflammatory cells in the lung tissue. Gossypin is a promising agent for the treatment of LPS induced lung inflammation via altering Nrf2/HO-1 and NF-κB.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiothoracic, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Venkata Subba Reddy Gangireddygari
- Plant Virus Research, Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Yingying Fan
- Department of Anesthesiology, Honghui Hospital, Xi'an, China
| |
Collapse
|
8
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
9
|
Du N, Lin H, Zhang A, Cao C, Hu X, Zhang J, Wang L, Pan X, Zhu Y, Qian F, Wang Y, Zhao D, Liu M, Huang Y. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway. Life Sci 2022; 309:120987. [PMID: 36155179 DOI: 10.1016/j.lfs.2022.120987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
AIMS Acute lung injury (ALI) is triggered by an acute inflammatory response. Lipopolysaccharide (LPS) is recognized as an important participant in the pathogenesis of sepsis, which may induce ALI. N-phenethyl-5-phenylpicolinamide (N5P) is a newly synthesized HIF-1α inhibitor. The purpose of the present study was to investigate the potential protective effects of N5P on LPS-induced ALI and the underlying mechanisms. MAIN METHODS In vivo experiment, the ALI rat model was induced by intratracheal injection of LPS, and various concentrations of N5P were injected intraperitoneally before LPS administration. In vitro experiment, RAW264.7 macrophages were administrated LPS and N5P to detect inflammatory cytokine changes. HIF-1α overexpression plasmid (HIF1α-OE) and granulocyte-macrophage colony-stimulating factor (GM-CSF), a glycolysis agonist, were used to examine the relationship between the HIF-1α/glycolysis/ASIC1a pathway. KEY FINDINGS Pretreatment with N5P inhibited not only the histopathological changes that occurred in the lungs but also lung dysfunction in LPS-induced ALI. N5P also decreased the levels of lactic acid in lung tissue and arterial blood, and inflammatory factors IL-1β and IL-6 levels in serum. LPS increased HIF-1α, glycolysis proteins GLUT1, HK2, ASIC1a, IL-1β, IL-6, and these changes were reversed by N5P in primary alveolar macrophages and RAW264.7 macrophages. Overexpression of HIF-1α significantly increased glycolysis genes and ASIC1a as well as inflammatory cytokines. Excessive glycolysis levels weaken the ability of N5P to inhibit inflammation. SIGNIFICANCE N5P may alleviate inflammation in ALI through the HIF-1α/glycolysis/ASIC1a signaling pathway. The present findings have provided pertinent information in the assessment of N5P as a potential, future therapeutic drug for ALI.
Collapse
Affiliation(s)
- Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China
| | - Fangyi Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Dahai Zhao
- Respiratory Department of the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230601, China
| | - Mingming Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Tang H, Zhao J, Feng R, Pu P, Wen L. Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Exp Ther Med 2021; 23:68. [PMID: 34934439 PMCID: PMC8649856 DOI: 10.3892/etm.2021.10991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The cardiotoxicity of pirarubicin (THP) seriously affects its clinical application, which cannot be ignored. The antioxidant effect of schisandrin B (SchB) has been extensively reported in the context of dietotherapy. However, whether this antioxidant effect can protect the heart from THP damage remains unknown. The aim of the present study was to investigate whether the antioxidant effect of SchB can antagonize the cardiotoxicity of THP. Changes in electrocardiogram (ECG), echocardiography and serum lactate dehydrogenase, brain natriuretic peptide, creatine kinase MB and cardiac troponin T levels were used to detect the degree of cardiac damage. The levels of superoxide dismutase (SOD), malondialdehyde, catalase and total antioxidant capacity in the serum and heart were measured to observe the oxidative stress state of rats. Primary cardiomyocytes were cultured, and cell viability and reactive oxygen species (ROS) production were detected. Western blotting was used to detect the expression levels of SOD2, NOX2, pro/cleaved-caspase3 and Bcl-2/Bax in heart tissue and primary cardiomyocytes to verify the related signaling pathways. THP-treated rats showed a range of cardiac damage, including an abnormal ECG, echocardiography and myocardial enzymes. In the cellular experiments, cell viability decreased and ROS increased. However, this damage was alleviated after SchB treatment. Further studies demonstrated that SchB antagonized THP cardiotoxicity via its antioxidant effect. In conclusion, SchB protects the heart from THP damage in rats, and the mechanism may be closely associated with its antioxidant effect.
Collapse
Affiliation(s)
- Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Junhao Zhao
- The First Clinical College, Jinyun Mountain Campus of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Rui Feng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Li Wen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
11
|
Fu M, Zhang K. MAPK interacting serine/threonine kinase 1 ( MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis. Bioengineered 2021; 12:2550-2562. [PMID: 34115574 PMCID: PMC8806917 DOI: 10.1080/21655979.2021.1935405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepsis, resulting from a harmful or damaging response to infection, is a complex and severe disease that causes high mortality. Three independent expression profiles of miRNA – GSE94717, GSE149764, and GSE101639 – were collected and integrated to analyze miRNAs associated with sepsis. One miRNA, miR-223-3p, was detected significantly downregulated in patients with sepsis. The upregulated miR-223-3p target genes in patients with sepsis were enriched in central carbon metabolism associated with HIF-1 signaling and galactose metabolism. Specially, three HIF-1 signaling genes – hypoxia-inducible factor 1-alpha (HIF1A), hexokinase 2 (HK2), and MAP kinase-interacting serine/threonine-protein kinase 1 (MKNK1) – were found significantly upregulated in patients with sepsis. Additionally, MKNK1 expression was downregulated in septic responders to early therapeutic treatments. Neutrophils were significantly accumulated in patients with sepsis and decreased in responders after therapy; MKNK1 was significantly positively correlated with neutrophils. Our findings indicate MKNK1, one targets of miR-223-3p, might be involved in sepsis via regulating the neutrophils abundance by mediating the expression inflammation factors.
Collapse
Affiliation(s)
- Mingmin Fu
- Department of Intensive Care Unit, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, Zhejiang, Peoples R China
| | - Kai Zhang
- Department of Emergency, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, Zhejiang, Peoples R China
| |
Collapse
|
12
|
Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes (Basel) 2020. [DOI: 10.3390/pr8111468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe damage to the respiratory system. With no specific treatment to date, it is crucial to identify potent inhibitors of SARS-CoV-2 Chymotrypsin-like protease (3CLpro) that could also modulate the enzymes involved in the respiratory damage that accompanies SARS-CoV-2 infection. Here, flavones isolated from Scutellaria baicalensis (baicalein, baicalin, wogonin, norwogonin, and oroxylin A) were studied as possible compounds in the treatment of SARS-CoV-2 and SARS-CoV-2-induced acute lung injuries. We used structural bioinformatics and cheminformatics to (i) identify the critical molecular features of flavones for their binding activity at human and SARS-CoV-2 enzymes; (ii) predict their drug-likeness and lead-likeness features; (iii) calculate their pharmacokinetic profile, with an emphasis on toxicology; (iv) predict their pharmacodynamic profiles, with the identification of their human body targets involved in the respiratory system injuries; and (v) dock the ligands to SARS-CoV-2 3CLpro. All flavones presented appropriate drug-like and kinetics features, except for baicalin. Flavones could bind to SARS-CoV-2 3CLpro at a similar site, but interact slightly differently with the protease. Flavones’ pharmacodynamic profiles predict that (i) wogonin strongly binds at the cyclooxygenase2 and nitric oxide synthase; (ii) baicalein and norwogonin could modulate lysine-specific demethylase 4D-like and arachidonate 15-lipoxygenase; and (iii) baicalein, wogonin, norwogonin, and oroxylin A bind to SARS-CoV-2 3CLpro. Our results propose these flavones as possible potent drugs against respiratory damage that occurs during SARS-CoV-2 infections, with a strong recommendation for baicalein.
Collapse
|
13
|
Vanderhaeghen T, Vandewalle J, Libert C. Hypoxia-inducible factors in metabolic reprogramming during sepsis. FEBS J 2020; 287:1478-1495. [PMID: 31970890 DOI: 10.1111/febs.15222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Sepsis is a highly heterogeneous syndrome that is caused by an imbalanced host response to infection. Despite huge investments, sepsis remains a contemporary threat with significant burden on health systems. Vascular dysfunction and elevated oxygen consumption by highly metabolically active immune cells result in tissue hypoxia during inflammation. The transcription factor hypoxia-inducible factor-1a (HIF1α), and its family members, plays an important role in cellular metabolism and adaptation to cellular stress caused by hypoxia. In this review, we discuss the role of HIF in sepsis. We show possible mechanisms by which the inflammatory response activated during sepsis affects the HIF pathway. The activated HIF pathway in turn changes the metabolism of both innate and adaptive immune cells. As HIF expression in leukocytes of septic patients can be directly linked with mortality, we discuss multiple ways of interfering with the HIF signaling pathway.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
14
|
Fitzpatrick SF. Immunometabolism and Sepsis: A Role for HIF? Front Mol Biosci 2019; 6:85. [PMID: 31555665 PMCID: PMC6742688 DOI: 10.3389/fmolb.2019.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of innate immune cells occurs during both the hyperinflammatory and immunotolerant phases of sepsis. The hypoxia inducible factor (HIF) signaling pathway plays a vital role in regulating these metabolic changes. This review initially summarizes the HIF-driven changes in metabolic dynamics of innate immune cells in response to sepsis. The hyperinflammatory phase of sepsis is accompanied by a metabolic switch from oxidative phosphorylation to HIF-1α mediated glycolysis. Furthermore, HIF driven alterations in arginine metabolism also occur during this phase. This promotes sepsis pathophysiology and the development of clinical symptoms. These early metabolic changes are followed by a late immunotolerant phase, in which suppressed HIF signaling promotes a switch from aerobic glycolysis to fatty acid oxidation, with a subsequent anti-inflammatory response developing. Recently the molecular mechanisms controlling HIF activation during these early and late phases have begun to be elucidated. In the final part of this review the contribution of toll-like receptors, transcription factors, metabolic intermediates, kinases and reactive oxygen species, in governing the HIF-induced metabolic reprogramming of innate immune cells will be discussed. Importantly, understanding these regulatory mechanisms can lead to the development of novel diagnostic and therapeutic strategies targeting the HIF-dependent metabolic state of innate immune cells.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Chien KJ, Yang ML, Tsai PK, Su CH, Chen CH, Horng CT, Yeh CH, Chen WY, Lin ML, Chen CJ, Chian CY, Kuan YH. Safrole induced cytotoxicity, DNA damage, and apoptosis in macrophages via reactive oxygen species generation and Akt phosphorylation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:94-100. [PMID: 30312850 DOI: 10.1016/j.etap.2018.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Safrole is a natural compound categorized as a group 2B carcinogen extracted from betel quid chewing, which is a common practice of psychoactive habits integrated into social and cultural ceremonies among serveral million people, especially in Southern or Southeastern Asia. Safrole is one of the major risk compunds for development of oral squamous cell carcinoma and hepatocellular carcinoma via DNA adduction. In innate immunity, macrophages are the predominant cells for non-specific first line defense against pathogens in oral tissue. Up to now, there is no evidence to implicate the potential toxicological effect of safrole on macrophages. In this study, we found safrole induced the generation of reactive oxygen species (ROS) and myeloperoxidase (MPO) in RAW264.7 macrophages in a concentration-dependent manner. Furthermore, cytotoxicity, DNA damage, and apoptosis were caused by safrole in a concentration-dependent manner. While the activation of antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was reduced, the phosphorylation of Akt was induced by safrole in a concentration-dependent manner. These results indicated that the induction of cytotoxicity, DNA damage, and apoptosis in macrophages by safrole was through generation of ROS and inhibition of antioxidative enzymes possibly via Akt phosphorylation.
Collapse
Affiliation(s)
- Kuang-Jen Chien
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Kun Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hui Chen
- Department of Hair Styling and Design, Hung-Kuang University, Taichung, Taiwan
| | - Chi-Ting Horng
- Department of Ophthalmology, Fooying University Hospital, Pingtung Taiwan; Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chung-Hsin Yeh
- Department of Nursing, College of Nursing and Health, Da-Yen University, Changhua, Taiwan; Department of Neurology, Yuan Rung Hospital, Changhua, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Yu Chian
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
16
|
Lee CY, Su CH, Tsai PK, Yang ML, Ho YC, Lee SS, Chen CH, Chen WY, Lin ML, Chen CJ, Chian CY, Huang-Liu R, Chang YL, Kuan YH. Cadmium nitrate-induced neuronal apoptosis is protected by N-acetyl-l-cysteine via reducing reactive oxygen species generation and mitochondria dysfunction. Biomed Pharmacother 2018; 108:448-456. [PMID: 30241048 DOI: 10.1016/j.biopha.2018.09.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is a well-established risk factor for various diseases, such as cardiovascular diseases, neurodegeneration, and cancer. Cadmium nitrate (Cd(NO3)2) is one of the major products from the cigarette smoke. Up to now, no supporting evidence on Cd(NO3)2-induced apoptosis and its related working mechanism in neurons has been found. In present study, the mode of cell death, caspase activities, reactive oxygen species (ROS) generation, and mitochondrial dysfunction in N2a cells, which are neuron-like cells, were assessed by Annexin V-FITC and PI assays, caspase fluorometric assay, DCFH-DA fluorescence assay, and JC-1 fluorescence assay respectively. The results showed that not only Cd(NO3)2 induced apoptosis and necrosis but also the activities of caspase-3 and -9 expressed in a concentration-dependent manner. In addition, Cd(NO3)2 also induced both mitochondrial dysfunction and ROS generation in a concentration-dependent manner. All these indicated that in N2a cells parallel trends could be observed in apoptosis, caspase-3 and -9 activities, mitochondrial dysfunction, and ROS generation when induced by Cd(NO3)2. Furthermore, Cd(NO3)2-induced apoptosis, caspases activities, mitochondrial dysfunction, and ROS generation were reduced by N-acetyl-l-cysteine (NAC). These results indicated that Cd(NO3)2-induced neuronal apoptosis was reduced by NAC via intrinsic apoptotic caspase cascade activities and their up-stream factors, including mitochondrial dysfunction and ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ping-Kun Tsai
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hui Chen
- Department of Hair Styling and Design, Hung-Kuang University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Yu Chian
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Rosa Huang-Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Lan Chang
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
Huang FM, Chang YC, Lee SS, Ho YC, Yang ML, Lin HW, Kuan YH. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food Chem Toxicol 2018; 122:215-224. [PMID: 30312649 DOI: 10.1016/j.fct.2018.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 01/28/2023]
Abstract
Bisphenol A (BPA) is primarily used in production of polycarbonate plastics and epoxy resins including plastic containers. BPA is an endocrine disruptor and supposes to induce asthma and cancer. However, so far only a few evidences have shown the BPA-induced toxic effect and its related mechanism in macrophages. BPA demonstrated cytotoxic effect on RAW264.7 macrophages in a concentration and time-dependent manner. BPA induces necrosis, apoptosis, and genotoxicity in a concentration-dependent manner. Phosphorylation of cytochrome C (cyto C) and p53 was due to mitochondrial disruption via BCL2 and BCL-XL downregulation and BAX, BID, and BAD upregulation. Both caspase-dependent, including caspase-9, caspase-3, and PARP-1 cleavage, and caspase-independent, such as nuclear translocation of AIF, pathways were activated by BPA. Furthermore, generation of reactive oxygen species (ROS) and reduction of antioxidative enzyme activities were induced by BPA. Parallel trends were observed in the effect of BPA on cytotoxicity, apoptosis, genotoxicity, p53 phosphorylation, BCL2 family expression exchange, caspase-dependent and independent apoptotic pathways, and ROS generation in RAW264.7 macrophages. Finally, BPA-exhibited cytotoxicity, apoptosis, and genotoxicity could be inhibited by N-acetylcysteine. These results indicated that the toxic effect of BPA was functioning via oxidative stress-associated mitochondrial apoptotic pathway in macrophages.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Wei CY, Sun HL, Yang ML, Yang CP, Chen LY, Li YC, Lee CY, Kuan YH. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2017; 32:397-403. [PMID: 26892447 DOI: 10.1002/tox.22243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Acute lung injury (ALI) is a serious inflammatory disorder which remains the primary cause of incidence and mortality in patients with acute pulmonary inflammation. However, there is still no effective medical strategy available clinically for the improvement of ALI. Wogonin, isolated from roots of Scutellaria baicalensis Georgi, is a common medicinal herb which presents biological and pharmacological effects, including antioxidation, anti-inflammation, and anticancer. Preadministration of wogonin inhibited not only lung edema but also protein leakage into the alveolar space in murine model of lipopolysaccharide (LPS)-induced ALI. Moreover, wogonin not only reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 but also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) induced by LPS. We further found wogonin inhibited the phosphorylation of p38 MAPK and JNK at a concentration lower than ERK. In addition, inhibition of lung edema, protein leakage, expression of iNOS and COX-2, and phosphorylation of p38 MAPK and JNK were all observed in a parallel concentration-dependent manner. These results suggest that wogonin possesses potential protective effect against LPS-induced ALI via downregulation of iNOS and COX-2 expression by blocking phosphorylation of p38 MAPK and JNK. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 397-403, 2017.
Collapse
Affiliation(s)
- Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Neurology, Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University, Taipei, Taiwan, Republic of China
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Ching-Ping Yang
- Department of Biotechology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|